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Abstract

This dissertation presents fast crash recovery for the RAMCloud distributed in-memory data center storage

system. RAMCloud is designed to operate on thousands or tens-of-thousands of machines, and it stores all

data in DRAM. Rather than replicating in DRAM for redundancy, it provides inexpensive durability and

availability by recovering quickly after server crashes. Overall, its goal is to reconstitute the entire DRAM

contents of a server and to restore full performance to the cluster in 1 to 2 seconds after failures. Consequently,

RAMCloud provides continuous availability by recovering from failures so quickly that applications never

notice failures.

The guiding design principle behind fast recovery is leveraging scale. RAMCloud scatters backup data

across thousands of disks, and it harnesses hundreds of servers in parallel to reconstruct lost data. The system

uses a decentralized log-structured approach for all of its data, in DRAM as well as on disk; this provides high

performance both during normal operation and during recovery. RAMCloud employs randomized techniques

at several key points to balance load and to manage the system in a scalable and decentralized fashion.

We have implemented and evaluated fast crash recovery. In an 80-node cluster, RAMCloud recovers

40 GB of data from a failed server in 1.86 seconds. Extrapolations based on measurements suggest that the

current implementation approach should scale to recover 200 GB of DRAM from a failed server in about

2 seconds and may scale to recover 1 TB of data or more in the same period with few changes. Our analysis

also suggests that 1 second recoveries may be as effective as increased on-disk redundancy at preventing data

loss due to independent server failures while being less costly.

Fast crash recovery provides a foundation for fault-tolerance and it simplifies RAMCloud’s overall de-

sign. In addition to handling single node failures, it is the key mechanism for recovering from multiple

simultaneous machine failures and performing complete cluster restarts. RAMCloud servers always recover

to a consistent state regardless of the timing of failures, which allows it to provide strong consistency seman-

tics even across failures. In addition to fast recovery itself, this dissertation details how RAMCloud stores

data in decentralized logs for durability, how the durability and consistency of data is protected from failures,

how log replay is divided across all the nodes of the cluster after failures, and how recovery is used to handle

the many failure scenarios that arise in large-scale clusters.
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Chapter 1

Introduction

The role of DRAM in storage systems has been increasing rapidly in recent years, driven

by the needs of large-scale Web applications. These applications access data intensively,

and, due to the disparity of disk performance and capacity, they cannot be satisfied by disks

alone. As a result, applications are keeping more and more of their data in DRAM. For

example, large-scale caching systems such as memcached [37] have seen wide deployment

in the past few years. In 2009, Facebook used a total of 150 TB of DRAM in memcached

and other caches for a database containing 200 TB of disk storage [27]. Similarly, the major

web search engines now keep their search indexes entirely in DRAM.

Although DRAM’s role is increasing in large-scale data center applications, DRAM

still tends to be used in limited or specialized ways. In most cases DRAM is just a

cache for some other storage system, such as a database; in other cases (such as search

indexes) DRAM is managed in an application-specific fashion. Both approaches contrast

with disk storage, which is accessed with uniform and general-purpose interfaces (for ex-

ample, filesystems and databases) that allow applications to use it easily.

Two main problems complicate using distributed caches to take advantage of DRAM.

First, applications must be augmented to manage consistency between caches and the back-

ing database, and the frequently resulting inconsistencies complicate the work of the de-

veloper. Second, because of the gap in performance between the backing database and

the caches, even just a small fraction of cache misses dramatically reduces overall perfor-

mance. Ultimately, this makes it difficult for the developer to predict the performance they

1



CHAPTER 1. INTRODUCTION 2

can expect from their storage.

Application-specific uses of DRAM, such as in-memory indexes, are problematic be-

cause they require hand-tailoring of applications. Such specialized DRAM use in applica-

tions can be effective, but it requires tight coupling between the application and the storage.

Developers must repeat the effort for each new application; they are left designing complex

and specialized consistency, availability, and fault-tolerance systems into their application.

RAMCloud solves these problems by providing a general-purpose storage system that

makes it easy for developers to harness the full performance potential of large-scale DRAM

storage. RAMCloud keeps all data in DRAM all the time, so there are no cache misses.

It is durable and available, so developers need not manage a separate backing store. It is

designed to scale up to ten thousand servers and to store petabytes of data while provid-

ing uniform low-latency access. RAMCloud achieves 5 µs round-trip times for small read

operations, which is a 50-5000× improvement over access times of state-of-the-art data

center storage systems. (Today, in 2013, data center storage systems typically have access

times ranging from a few hundred microseconds for volatile caches up to 100 milliseconds

or more for replicated disk-based systems.) RAMCloud’s overall goal is to enable a new

class of data center applications. These applications will be capable of manipulating mas-

sive datasets in a way that has previously only been possible for small datasets in the local

memory of a single machine.

This dissertation describes and evaluates RAMCloud’s scalable fast crash recovery

which is at the heart of how RAMCloud provides durability and availability while re-

taining high performance and low cost. While durability, availability, and fault-tolerance

make RAMCloud practical and simple for developers to use, RAMCloud’s reliance on

DRAM prevents it from using the same solutions that typical data center storage systems

use. Specifically, four properties of DRAM guide the design of RAMCloud and motivate

its use of fast recovery for fault-tolerance:

• Volatility: DRAM is not durable; data must be replicated on stable storage or it risks

loss on power failure.
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• Performance: DRAM is low-latency; in order to expose the full performance bene-

fits to applications, RAMCloud’s approach to durability must not impact the perfor-

mance of normal operations. Any performance overheads jeopardize RAMCloud’s

potential to support new classes of data-intensive applications.

• Cost: DRAM is expensive per bit both in terms of fixed cost and operational cost.

This makes approaches that replicate data in DRAM prohibitive. For example, trip-

licating data in DRAM would triple the cost and energy consumption of the cluster

(and would still lose data on cluster-wide power failure).

• Low Per-Node Capacity: Typical data center servers can be cost-effectively equipped

with 64 to 256 GB of DRAM today. The large-scale datasets typical of modern web

applications require the DRAM capacity of many machines, so RAMCloud must

scale to support thousands of storage servers.

However, scaling across thousands of machines works against durability since, in a

large cluster, server failures happen frequently. RAMCloud must compensate for this

and ensure data is safe even when server failures are frequent.

RAMCloud’s approach is to keep only a single copy of data in DRAM; redundant

copies are kept on disk or flash, which are cheaper and more durable than DRAM. However,

this means that a server crash will leave some of the system’s data unavailable until it can

be reconstructed from secondary storage. Scalable fast crash recovery solves this problem

by reconstructing the entire contents of a lost server’s memory (64 to 256 GB) from disk

and resuming full service in 1 to 2 seconds. The assumption is that this is fast enough to be

considered “continuous availability” for most applications.

This dissertation describes and evaluates scalable fast crash recovery. Additionally, it

details the other problems that arise in providing fault tolerance in a large-scale distributed

system and describes solutions and their implementation in RAMCloud. This includes

retaining strong consistency (linearizability) despite faults, handling multiple simultaneous

failures, handling massive failures including completely restarting a RAMCloud cluster,

and cleaning up storage and resources across the cluster after servers crash.
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There are several key aspects to the RAMCloud recovery architecture:

• Harnessing scale: Each server scatters its backup data across all of the other servers,

allowing thousands of disks to participate in recovery. Simultaneously, hundreds of

recovery master servers work together in a highly data parallel and tightly pipelined

effort to rapidly recover data into DRAM to restore availability when servers fail.

• Load balancing: For crash recovery to take full advantage of the large aggregate

resources of the cluster, it must avoid bottlenecks by spreading work evenly across

thousands of CPUs, NICs, and disks. Recovery is time sensitive and involves many

machines; without care, slow servers (“stragglers”) can easily drag out recovery time,

which manifests itself as unavailability.

• Decentralization: In order to scale to support clusters of thousands of machines,

servers must operate independently both during normal operation and during recov-

ery. Each server minimizes its requests to centralized services by having its own

self-contained and self-describing log.

• Randomized techniques: Careful use of randomization is critical for RAMCloud’s

load balancing and decentralization. Servers rely on randomization at key points

to enable decentralized decision making and to achieve precise balancing of work

without the need for explicit coordination.

• Log-structured storage: RAMCloud uses techniques similar to those from log-

structured file systems [42], not just for information on disk but also for information

in DRAM. Its log-structured approach provides high performance by safely buffer-

ing updates and eliminating disks from the fast path while simplifying many issues

related to crash recovery.

We have implemented the RAMCloud architecture in a working system and evaluated

its crash recovery properties. Our 80-node cluster recovers in 1.86 seconds from the failure

of a server with 40 GB of data, and the approach scales so that larger clusters can recover

larger memory sizes in less time.
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1.1 Dissertation Contributions

The main contributions of this dissertation are:

• The design and implementation of a large-scale DRAM-based data center storage

system as reliable as disk-based storage systems with minimal performance and cost

penalties. This is the only published approach to maintaining durability and avail-

ability for distributed DRAM-based storage that optimizes for both cost-effectiveness

and low-latency operation. Overall, it achieves the reliability of today’s disk-based

storage systems for the cost of today’s volatile distributed DRAM caches with per-

formance 50-5000× greater than either.

• The design, implementation, and evaluation of RAMCloud’s scalable fast crash re-

covery system which

– makes DRAM-based storage cost-effective by eliminating the need for redun-

dant data in DRAM while retaining high availability;

– and improves in recovery time as cluster size scales by harnessing the resources

of thousands of servers.

• The design, implementation, and evaluation of a decentralized log which

– efficiently creates disk-based backups of data stored in DRAM while imposing

no overhead for read operations and eliminating disk operations for writes;

– scales to tens of thousands of machines through aggressive decentralization;

– and provides strong consistency semantics while remaining durable in spite of

failures.

Overall, RAMCloud’s decentralized log and scalable fast crash recovery make it easy

for applications to take advantage of large scale DRAM-based storage by making the sys-

tem failure transparent and retaining its low latency access times.



Chapter 2

Motivation

RAMCloud’s use of DRAM and its focus on large-scale deployment shape how it provides

fault tolerance, which centers on fast crash recovery. This chapter describes why traditional

replicated approaches to fault-tolerance are impractical in RAMCloud, primarily due to

the high cost-per-bit of DRAM. This motivates fast crash recovery as an alternative to

traditional fault-tolerance approaches. Overall, fast crash recovery provides continuous

availability while allowing the use of inexpensive disks for redundancy and avoiding disk-

limited normal-case performance.

RAMCloud is a data center storage system where every byte of data is present in DRAM

at all times. RAMCloud aggregates the DRAM of thousands of servers into a single co-

herent storage system. RAMCloud’s overall goal is to enable a new class of data center

applications capable of manipulating massive datasets in a way that has only been possible

for small datasets in the local memory of a single machine in the past. For more details on

the motivation for RAMCloud and some of its architectural choices see [40].

Fault-tolerance is a key attribute of RAMCloud. Though RAMCloud stores all data

in volatile DRAM, it is designed to be as durable and available as disk-based data center

storage systems. Fault-tolerance is essential to enable developers to easily incorporate

large-scale DRAM storage into applications.

Redundancy is fundamental to fault-tolerance. Data center storage systems rely on

redundant copies of data to maintain availability when servers fail. Given that some repli-

cation is required for availability, systems have a choice on how to implement it. In today’s

6
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disk-based data center storage systems, the most common approach is to replicate all data

and metadata on stable storage in the same form used to service requests during normal

operation. When a server fails, another server with a replica of the data can continue to

service requests as usual.

Does this approach work for RAMCloud? How should a large-scale DRAM-based

storage system provide fault-tolerance? Today, there are no general-purpose, fault-tolerant,

large-scale, DRAM-based storage systems, perhaps because DRAM presents special chal-

lenges. It is volatile and loses data on power failure. It is expensive, so redundancy in

DRAM is impractically expensive. It is high-performance; any performance penalty in the

storage system will be immediately reflected in client application access times. Finally, it is

also less dense; more machines are needed to house large datasets, so it indirectly increases

the frequency of machine failures in a cluster.

RAMCloud could use the same approach as other data center storage systems by storing

each object in the DRAM of multiple servers; however, with a typical replication factor

of three, this approach would triple both the cost and energy usage of the system. Even

without triplication, in RAMCloud the DRAM of each machine contributes more than half

of the hardware cost (∼$10/GB compared to ∼$0.10/GB for disk) and energy consumption

(∼1 W/GB [35] compared to ∼5 mW/GB for disk). Thus, using DRAM for replication is

prohibitively expensive. As a result, RAMCloud keeps only a single copy of each object

in DRAM, with redundant copies on secondary storage such as disk or flash. Since the

cost and energy usage of DRAM for primary copies dominates compared to the redundant

copies on disk or flash, replication is nearly free. For example, the three-year total cost

of ownership of 64 GB of DRAM is about $800 compared to $22 for the 192 GB of disk

storage needed to backup the DRAM in triplicate.

However, the use of disks raises two issues. First, if data were to be written syn-

chronously to disks for durability before responding to client requests, then the normal

case performance of the system would be limited by the high latency of disk writes. To-

day’s networking hardware allows round trips in a few microseconds, whereas a single disk

access takes milliseconds; synchronous disk operations would slow RAMCloud by a factor

of 1,000. The primary value of RAMCloud comes from its high performance, so disk-

bound performance would severely limit its usefulness. Second, this approach could result
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in long periods of unavailability or poor performance after server crashes, since data will

have to be reconstructed from secondary storage. Data center applications often require

continuous availability, so any noticeable delay due to failures is unacceptable.

This dissertation describes how RAMCloud uses scalable fast crash recovery and de-

centralized buffered logs to solve these two problems. Recovery minimizes unavailability

due to server failures; buffered logs record data durably without the need for synchronous

disk writes. During normal operation, each server scatters backup data across all of the

nodes of the cluster, which temporarily store data in small non-volatile buffers. Each time

a buffer is filled, it is written disk. When a server fails in RAMCloud, nodes cooperate to

rapidly reconstitute the DRAM contents of the failed server. Since data for a failed server

is stored on all of the servers of the cluster, it can be reloaded quickly by reading from all

of the disks in parallel. Furthermore, the work of processing data as it is loaded from disks

is split across hundreds of machines. By harnessing all of the disks, NICs and CPUs of a

large cluster RAMCloud recovers from failures in 1 to 2 seconds and provides an illusion

of continuous availability.

Fast crash recovery together with buffered logging solves each of the four key issues

with using DRAM as a large scale storage medium:

• Volatility: Servers scatter replicas of data across the disks of other nodes in the

cluster; data is protected against power failure, since it is always stored on disk or in

a non-volatile buffer.

• Performance: Since writes are buffered in non-volatile storage and written to disk

in bulk, access latency is determined by network delay rather than disk latency even

for update operations.

• Cost: Fast crash recovery makes large-scale DRAM more cost-effective in two ways;

it eliminates the need for expensive redundancy in DRAM, and it retains the high

performance for updates that makes DRAM storage so valuable.

• Reliability at Scale: DRAM may require the use of thousands or tens of thousands

of machines for large datasets, which increases the rate of failures RAMCloud must

tolerate. Fast recovery more than compensates for the increased risk due to more
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frequent failures. By restoring full replication quickly after a node failure, it reduces

vulnerability to data loss. Section 6.7 analyzes the impact of recovery time on reli-

ability and shows that improving recovery time reduces the probability of data loss

nearly as significantly as increasing redundancy.

Overall, fast recovery is the key to making RAMCloud fault-tolerant and cost-effective

while retaining access times determined by network latency rather than disk access times.

The next chapter gives an overview of RAMCloud and recovery. The remaining chap-

ters describe how RAMCloud stores redundant data on disk without limiting performance

and how clusters use that on-disk data to reconstitute the DRAM of failed servers to create

an illusion of continuous availability.



Chapter 3

RAMCloud Overview

This chapter describes the key ideas behind RAMCloud, the high level components of the

system, and its basic operation. Additionally, because crash recovery and normal request

processing are tightly intertwined, this chapter also gives an overview of how single ma-

chine failures are handled and how that informs and motivates many design choices in

RAMCloud.

3.1 Basics

RAMCloud is a storage system where every byte of data is present in DRAM at all times.

The hardware for RAMCloud consists of hundreds or thousands of off-the-shelf servers in

a single data center, each with as much DRAM as is cost-effective (64 to 256 GB today).

RAMCloud aggregates the DRAM of all these servers into a single coherent storage system.

It uses backup copies on disk or flash to make its storage durable, but the performance of

the system is determined by DRAM, not disk.

The RAMCloud architecture combines two interesting properties: low latency and large

scale. First, RAMCloud is designed to provide the lowest possible latency for remote

access by applications in the same data center. Most of today’s data center networks cannot

meet RAMCloud’s latency goals, but this is changing as the deployment of 10 gigabit

Ethernet has started in data centers. The current implementation achieves end-to-end times

of 5 µs for reading small objects (∼100 to 1000 B) using inexpensive Infiniband networking

10
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hardware, and initial tests indicate similar times are achievable with commodity 10 gigabit

equipment. This represents an improvement of 50-5000× over existing data center-scale

storage systems. Each RAMCloud storage server can handle about 650 thousand small

read requests per second.

The second important property of RAMCloud is scale; a single RAMCloud cluster must

support up to ten thousand servers in order to provide a coherent source of data for large

applications (up to about 2.5 PB with today’s machines). Scale creates several challenges,

such as the likelihood of frequent component failures and the need for distributed decision-

making to avoid bottlenecks. However, scale also creates opportunities, such as the ability

to enlist large numbers of resources on problems like fast crash recovery.

RAMCloud’s overall goal is to enable a new class of data center applications. These

applications will be capable of manipulating massive datasets in a way that has only been

possible for small datasets in the local memory of a single machine heretofore. For more

details on the motivation for RAMCloud see [40].

3.2 Data Model

The current data model in RAMCloud is a simple key-value store. RAMCloud supports

any number of tables, each of which may contain any number of objects. An object consists

of

• a variable-length byte array that serves as its key (up to 64 KB) that is provided by

the client,

• a variable length byte array of opaque data (up to 1 MB) that is provided by the client

and left uninterpreted by RAMCloud,

• and a 64-bit system-managed version number that strictly increases each time the

value for a particular key is set, deleted, or overwritten.

RAMCloud provides a simple set of operations for creating and deleting tables and for

reading, writing, and deleting objects within a table. Objects are addressed using their keys

and are read and written in their entirety and atomically. There is no built-in support for
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Figure 3.1: RAMCloud cluster architecture. Each storage server contains a master and a backup.

A central coordinator manages the server pool and tablet configuration. Client applications run on

separate machines and access RAMCloud using a client library that makes remote procedure calls.

atomic updates across multiple objects, but RAMCloud does provide a conditional update

(“replace the contents of object O in table T only if its current version number is V ”), which

can be used to implement more complex transactions in application software. Clients can

compare version numbers between objects retrieved from the same table and having the

same key to determine which was more recently written.

3.3 System Structure

Figure 3.1 shows the composition of a RAMCloud cluster. Each of the storage servers has

two components: a master, which manages RAMCloud objects in its DRAM and services

client requests, and a backup, which stores redundant copies of objects from other masters

using its disk or flash memory.

Client applications use a RAMCloud client library that presents the cluster as a single

storage system. The library transparently fetches (and caches) cluster configuration in-

formation from the RAMCloud cluster coordinator (described in the next section), which

allows it to direct application requests to the appropriate RAMCloud machines.
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3.3.1 The Coordinator

Each RAMCloud cluster also contains one distinguished server called the coordinator.

The coordinator manages cluster membership, initiates recoveries when machines fail, and

maintains the mapping of keys to masters. The use of a centralized coordinator has a sub-

stantial impact on the design of the rest of the system. Centralization simplifies many oper-

ations, but, in order for the system to scale to thousands of machines, use of the coordinator

must be limited. By design, the coordinator is involved in few client requests.

To maintain high availability, RAMCloud must take care to prevent the coordinator

from being a single point of failure. The coordinator’s core data structures are stored in

ZooKeeper [25], a replicated, highly-available configuration storage system. At any one

time, a RAMCloud cluster has a single operating coordinator with multiple “warm” passive

coordinators that are fed the same state state changes as the active coordinator. One of these

passive coordinators takes over in the case the active coordinator fails. ZooKeeper mediates

the selection of the replacement coordinator using its consensus algorithm. The details of

ZooKeeper and coordinator failover are outside the scope of this dissertation.

3.3.2 Tablets

Clients create and work with tables, but the coordinator assigns objects to masters in units

of tablets. Tablets allow a single table to be distributed across multiple masters. Keys for

objects in a table are hashed into a 64-bit space. The hash space for each table is divided

into one or more tablets. Each tablet is a contiguous subrange of the key hash space for its

table. The coordinator may assign a single master any number of tablets from any number

of tables.

New tables are initially created with a single empty tablet assigned to a single server.

Clients can request that a tablet be split at a particular key hash. The system also supports

a basic form of tablet migration between masters. Tablet splitting together with migration

allow large tables to be broken up and distributed across multiple masters. An automatic

load balancer is planned for future work; it will migrate tablets to optimize for locality by

minimizing the number of masters a particular application must access.

The coordinator stores the mapping between tablets and masters. The RAMCloud client
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library maintains a cache of this information, fetching the mappings for each table the first

time it is accessed. Once a client’s configuration cache has been populated, a client can

issue storage requests directly to the relevant master without involving the coordinator. If

a client’s cached configuration information becomes stale because a tablet has moved, the

client library discovers this when it makes a request to a master that no longer contains

the tablet, at which point it flushes the stale data from its cache and fetches up-to-date

information from the coordinator. As will be seen in Section 3.6, recovery from server

failures causes tablets to relocate across the cluster; clients use the same tablet location

mechanism to find the new location for data after a server crash.

3.4 Durability and Availability

The internal structure of a RAMCloud storage server is determined primarily by the need

to provide durability and availability. In the absence of these requirements, a master would

consist of little more than a hash table that maps from 〈table identifier, object key〉 pairs

to objects in DRAM. The main challenge is providing durability and availability without

sacrificing performance or greatly increasing system cost.

One possible approach to availability is to replicate each object in the DRAM of several

servers. However, DRAM-based replicas would still be vulnerable in the event of power

failures. Machines with 64 to 256 GB of DRAM are common in data centers, and data

center battery backups [44] do not last long enough to flush the entire DRAM contents of a

server to disk. Furthermore, with a typical replication factor of three, this approach would

triple both the cost and energy usage of the system; each server is already fully loaded, so

adding more memory would also require adding more servers and networking.

Instead, RAMCloud keeps only a single copy of each object in DRAM, with redundant

copies on secondary storage such as disk or flash. In a RAMCloud cluster, the DRAM of

each machine contributes more than half of the hardware cost and energy consumption.

Since the cost and energy usage of DRAM for primary copies dominates compared to the

redundant copies on disk or flash, replication is nearly free. However, the use of disks

raises two issues. First, if data must be written synchronously to disks for durability be-

fore responding to client requests, then the normal case performance of the system will
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be limited by the high latency of disk writes. Second, this approach could result in long

periods of unavailability or poor performance after server crashes, since data will have to

be reconstructed from secondary storage. Section 3.5 describes how RAMCloud solves the

performance problem. Section 3.6 gives an overview of recovery, which restores access to

data quickly after crashes so that clients never notice failures.

3.5 Log-Structured Storage

RAMCloud manages object data using a logging approach. This was originally motivated

by the desire to transfer backup data to disk or flash as efficiently as possible, but it also

provides an efficient memory management mechanism, enables fast recovery, and has a

simple implementation. The data for each master is organized as a log as shown in Fig-

ure 3.2. When a master receives a write request, it appends the new object to its in-memory

log and forwards that log entry to several backup servers. The backups buffer this informa-

tion in memory and return immediately to the master without writing to disk or flash. The

master completes its request and returns to the client once all of the backups have acknowl-

edged receipt of the log data. When a backup’s buffer fills, it writes the accumulated log

data to disk or flash in a single large transfer, then deletes the buffered data from memory.

Backups must ensure that buffered log data is as durable as data on disk or flash; in-

formation must not be lost in a power failure. As mentioned earlier, many existing data

centers provide per-server or rack-level battery backups that can extend power briefly after

outages. For example, one specification from Facebook [44] provides for about 45 seconds

of battery power in the case of a power outage. Backups limit the amount of data they

buffer and regularly flush data to stable storage to ensure they can safely write out any

partial, dirty buffers in the case of an outage. (The amount backups buffer is configurable;

to ensure safety, it should based on a conservative estimate of local storage performance

and battery life.) An alternative to batteries is to use new DIMM memory modules that

incorporate flash memory and a super-capacitor that provides enough power for the DIMM

to write its contents to flash after a power outage [1]; each backup could use one of these

modules to hold all of its buffered log data. Enterprise disk controllers with persistent cache

memory [34] are widely available and could also be used.
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Figure 3.2: When a master receives a write request, it updates its in-memory log and forwards the

new data to several backups that buffer the data in their memory. The data is eventually written to

disk or flash in large batches. Backups must use an auxiliary power source to ensure that buffers

can be written to stable storage during power failures.

RAMCloud manages its logs using techniques similar to those in log-structured file

systems [42]. Each master’s log is divided into 8 MB segments. The master keeps a count of

unused space within each segment, which accumulates as objects are deleted or overwritten.

It reclaims wasted space by occasionally invoking a log cleaner [42, 43] ; the cleaner selects

one or more segments to clean, reads the live records from the segments and rewrites them

at the head of the log, then deletes the cleaned segments along with their backup copies.

Segments are also the unit of buffering and I/O on backups; the large segment size enables

efficient I/O for both disk and flash.

RAMCloud uses a log-structured approach not only for backup storage, but also for

information in DRAM. The memory of a master is structured as a collection of log seg-

ments which map directly to the segment replicas stored on backups. This allows masters

to manage both their in-memory data and their backup data using a single mechanism. The

log provides an efficient memory management mechanism, with the cleaner implementing

a form of generational garbage collection. The details of memory management and log

cleaning are outside the scope of this dissertation; see [43] for more on this topic.
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In order to support random access to objects in memory, each master keeps a hash table

that maps from a 〈table identifier, object identifier〉 pair to the current version of an object

in a segment. The hash table is used both to look up objects during storage operations and

to determine whether a particular object version is the current one during cleaning. For

example, if there is no hash table entry for a particular object in a segment being cleaned,

it means the object has been deleted.

The buffered logging approach allows writes to complete without waiting for disk oper-

ations, but it limits overall system throughput to the bandwidth of the backup storage. For

example, each RAMCloud server can handle about 300 thousand 100-byte writes/second

(versus 650 thousand reads/second) assuming 2 disks per server, 100 MB/s write band-

width for each disk, 3 disk replicas of each object, and a 100% bandwidth overhead for log

cleaning. Flash or additional disks can be used to boost write throughput.

3.6 Recovery

When a RAMCloud storage server crashes, the objects that had been present in its DRAM

must be recovered by replaying the log the master left behind. This requires reading log

segment replicas from backup storage back into DRAM, processing the records in those

replicas to identify the current version of each live object, and reconstructing the hash

table used for storage operations. The crashed master’s data will be unavailable until the

objects from the crashed server’s log are read into DRAM and the hash table has been

reconstructed.

Fortunately, if the period of unavailability can be made very short, so that it is no

longer than other delays that are common in normal operation, and if crashes happen in-

frequently, then crash recovery may be made unnoticeable to application users. If recovery

from server failures were instantaneous, applications and their users would be unable to de-

termine whether storage server failures had occurred at all. Though instantaneous recovery

is impractical, for certain classes of applications RAMCloud may be able to recover from

failures quickly enough to avoid perception by users. Many data center applications are

exposed to users as web applications accessed though a browser over the Internet. Because

of the high variance in delivering content over the Internet, web application interfaces and
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their users expect to occasionally experience delays of a few seconds. As a result, RAM-

Cloud is designed to achieve 1 to 2 second recovery, which is fast enough to constitute

“continuous availability” for many applications. Our goal is to build a system that achieves

this speed for servers with 64 to 256 GB of memory and scales to recover larger servers as

cluster size scales.

3.6.1 Using Scale

The key to fast recovery in RAMCloud is to take advantage of the massive resources of the

cluster. This section introduces RAMCloud’s overall approach for harnessing scale during

recovery; Chapter 5 describes the process of recovery in detail.

As a baseline, Figure 3.3a shows a simple mirrored approach where each master chooses

3 backups and stores copies of all its log segments on each backup. Unfortunately, this cre-

ates a bottleneck for recovery because the master’s data must be read from only a few disks.

In the configuration of Figure 3.3a with 3 disks, it would take about 3.5 minutes to read

64 GB of data.

RAMCloud works around the disk bottleneck by using more disks during recovery.

Each master scatters its log data across all of the backups in the cluster as shown in Fig-

ure 3.3b; each segment is replicated on a different set of backups. During recovery, these

scattered replicas can be read simultaneously; with 1,000 disks, 64 GB of data can be read

into memory in less than one second.

Once the segment replicas have been read from disk into backups’ memories, the log

must be replayed to find the most recent version for each object. No backup can tell in iso-

lation whether a particular object found in a particular replica was the most recent version

of that object, because a different replica on another backup may contain a more recent

version of the object. One approach is to send all of the log segment replicas for a crashed

server to a single recovery master and replay the log on that master, as in Figure 3.3b. Un-

fortunately, the recovery master is a bottleneck in this approach. With a 10 Gbps network

interface, it will take about one minute for a recovery master to receive 64 GB of data, and

the master’s CPU can also become a bottleneck due to the cache misses caused by rapidly

inserting objects into its hash table.
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Figure 3.3: (a) Disk bandwidth is a recovery bottleneck if each master’s data is mirrored on a small

number of backup machines. (b) Scattering log segments across many backups removes the disk

bottleneck, but recovering all data on one recovery master is limited by the network interface and

CPU of that machine. (c) Fast recovery is achieved by partitioning the data of the crashed master

and recovering each partition on a separate recovery master.
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To eliminate the recovery master as the bottleneck, RAMCloud uses multiple recovery

masters as shown in Figure 3.3c. During recovery RAMCloud divides up the tablets that

belonged to the crashed master into partitions of roughly equal size. Each partition of the

crashed master is assigned to a different recovery master, which fetches the log records for

objects in its partition from backups. The recovery master then incorporates those objects

into its own log and hash table. With 100 recovery masters operating in parallel, 64 GB of

data can be transferred over a 10 Gbps network in less than 1 second. As will be shown in

Chapter 6, this is also enough time for each recovery master’s CPU to process the incoming

data.

Thus, the overall approach to recovery in RAMCloud is to combine the disk bandwidth,

network bandwidth, and CPU cycles of many of machines in a highly parallel and tightly

pipelined effort to bring the data from the crashed server back online as quickly as possible.

The next chapter details how the logs that underlie both recovery and normal operation

are created and maintained by masters. The log replication module on each master handles

all aspects of data durability even in the face of failures; it recreates lost replicas when a

backup with segment replicas fails, and it ensures damaged or inconsistent replicas can-

not affect the correctness of recovery. By transparently handling many of problems that

can arise with replicated data, the log replication module simplifies the complex task of

recovery. The coordinator, the recovery masters, and all the backups of the cluster are left

to focus solely on restoring access to the data of crashed servers as quickly as possible.

Chapter 5 details how recovery divides work among thousands of machines and how it

coordinates their resources to recover in 1 to 2 seconds.



Chapter 4

Fault-tolerant Decentralized Logs

RAMCloud’s decentralized logs are at the core of all of its operations. This chapter de-

scribes how these logs are created and maintained in detail, while Chapter 5 explains the

specifics of using these logs to rapidly recover the contents of failed servers.

First, this chapter describes the normal operation of logs, including how masters repli-

cate their log data efficiently for durability, how logs are segmented and scattered across

the cluster for fast recovery, and how logs are reassembled during recovery. Afterward,

the chapter details the ways failures can affect logs and how RAMCloud compensates for

them. The chapter concludes with details of how disk storage space is reclaimed.

As described in Section 3.5, each storage server’s master service stores all object data

in its own fault tolerant log that is scattered across the cluster. Each master has a replica

manager whose primary responsibility is to construct and maintain this log, so that it can

be used to safely recover the master’s data after server failure with minimal delay. To

the extent possible, the replica manager must ensure that the master’s log is available and

safe for replay at all times, since failures are unexpected by nature. Master recovery is

complex and highly-optimized, and it must work correctly even under the most elaborate

failure scenarios. By shifting the burden of producing and maintaining a safe, consistent,

and available log to the master’s log replication module, recovery is freed to focus solely

on fast replay of the log.

RAMCloud’s decentralized logs have several important properties:

• Scalability: A master never needs to consult the coordinator in order to append to

21
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its log. This prevents bottlenecks on centralized metadata services (for example, the

coordinator). For example, some similar data center filesystems also scatter data

blocks across many machines, but they centrally track where each of the replicas

for each block are located in the cluster (for example, Windows Azure Storage [6]).

RAMCloud servers keep no centralized record of log contents. In part by avoiding

centralization, RAMCloud is designed to scale to clusters of tens of thousands of

machines.

• High bandwidth: Each master scatters log data across the entire cluster, which pro-

vides high bandwidth both for writing and for reading during recovery. This is key

in meeting RAMCloud’s 1 to 2 second crash recovery goal.

• Cost effectiveness: Because of the high cost per bit of DRAM, redundant copies of

log data are only stored on disk or flash. This provides durability for the data stored

in memory on masters without using more DRAM than is absolutely required for the

lowest latency performance.

• Low-latency operation: For applications to gain the full performance benefit from

DRAM, log operations must provide durability at the speed of the network (in mi-

croseconds) rather than the speed of disk (in milliseconds). Backups judiciously

buffer updates in DRAM and rely on limited battery backups to safely flush data to

disk on power failures. Because data can be written to disk off the fast path, client

writes can be serviced quickly.

• Durability and fault-tolerance: Masters’ replica managers react to server failure

notifications from the coordinator and automatically take action to restore full repli-

cation to portions of the log affected by failure. This limits the complexity of pre-

venting data loss to each master’s replica manager.

• Consistency and safety: Each master’s log provides strong consistency even while

allowing concurrent updates to facilitate high throughput. In fact, logs support both

concurrent log append operations and concurrent replication requests to backups.

Each log guarantees stale data will never be seen when it is read for recovery, and any

attempt to use a log that has experienced data loss will always be correctly detected.
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These strong guarantees simplify the logic for appending to logs and for using log

data during recovery.

The rest of this chapter first describes how RAMCloud manages its decentralized logs

during normal operation and then details how the logs provide durability and consistency

even as servers fail.

4.1 Log Operations

Each server has exactly one log, and the lifetime of every log is tied directly to the lifetime

of its server. When a server enlists with the coordinator, it is assigned a server id that

doubles as the server’s log id. This id is used to tag and identify data written by a particular

server regardless of where it is stored in the cluster. A server’s log data is automatically

deleted when the coordinator removes the server from the cluster, which typically happens

after the failure and recovery of that server.

Each master organizes its DRAM as a log, and the master’s replica manager works

to replicate this in-memory log to stable storage on other machines. This ensures that

the objects will be recovered when the master fails. From the perspective of the master

replicating client data, the replica manager has a simple interface consisting of just four

methods. Each is summarized below and explained in more detail later.

• allocateHead(segment) registers an empty 8 MB region of the master’s DRAM

called a segment with the replica manager. After a segment is registered, the replica

manager incrementally replicates data as it is added to the segment by sending it to

other servers for backup (the replica manager is notified of added data via the sync

call, described below). The replica manager also takes responsibility for recreating

replicas of any segment that are lost due to server failures. Policy on how a master

allocates DRAM for segments is left outside the replica manager, so allocation can

be tuned without changes to replication code.

• sync(segment, offset) waits for an object appended to the log to be safely

replicated to backup servers. It blocks when called until a segment has been repli-

cated safely up through a specified byte offset. Masters call this after adding data
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to a segment to ensure that the data is durable before acknowledging the associated

operation to the client.

• free(segment) reclaims log space. This call disassociates a segment’s DRAM

buffer from the replica manager, which allows it to be reused. It also sends a noti-

fication to backups to inform them that it is safe to reclaim the associated space on

their stable storage. Section 4.6 details how space is reclaimed both in the master’s

DRAM and on the stable storage of backups.

• findReplicasForLog(serverId) is called by the coordinator during master

crash recovery to find all log data for a failed server. By broadcasting to the cluster,

it produces a map of where all segment replicas for a master’s log are located across

the cluster. This map is used by servers participating in recovery to find and acquire

log data. Section 4.4 gives the details of this operation, and Chapter 5 describes how

the replicas are used during recovery.

4.2 Appending Log Data

When a master receives a write request, it must make the new object durable; the master

appends the new data to its DRAM log and forwards the log entry to a configurable number

of backup servers. The default policy is to keep three copies of objects on disk in addition

to the copy kept in the master’s DRAM. These backups buffer the information in memory

and return immediately to the master without writing to disk or flash. The master completes

its request and returns to the client once all of the backups have acknowledged receipt of

the log data. When a backup’s buffer fills, it writes the accumulated log data to disk or flash

in the background in a single large transfer, then deletes the buffered data from its memory.

Buffering and writing out data in large blocks in the background has two key perfor-

mance benefits. First, disks are removed from the fast path; client write operations never

wait on disks, giving RAMCloud write latencies that are only bounded by RPC round-trip

times (microseconds rather than milliseconds). Second, reading and writing in large blocks

amortizes the high cost of the seek and rotational latency of disks. Backups accumulate

8 MB of buffered data of a master’s log before flushing it to disk. RAMCloud uses 8 MB
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chunks in order to achieve effective bandwidth for each disk that is 85% of its maximum

sequential read and write bandwidth even with low-end commodity hard disks (§6.2). This

helps performance both while writing during normal operation and while reading during

recovery.

However, while critical to RAMCloud’s low-latency operation, buffering updates also

requires that buffers on backups are as durable as disk storage. Otherwise, RAMCloud

would lose recent object updates during power failures, since objects buffered on backups

would be lost along with the data stored in the DRAM of masters. To solve this, backups

depend on battery power to allow them to flush buffers to storage in the case of power loss.

Unfortunately, typical data center batteries are limited [44] and do not last long enough

to reliably flush 64 to 256 GB to disk during a power failure. To make this safe without

requiring additional hardware, each backup limits its total buffer capacity to ensure all data

can be flushed safely to disk on power failure. If a master attempts to replicate data to

a backup whose buffers are full, the backup rejects the request and the master must retry

elsewhere. Backup buffer capacity is configurable and should be based on a conservative

estimate of the storage device performance (which determines how quickly it can write data

to disk during a power failure) and expected battery life. Ideally, backups would only rely

on a small fraction of their expected battery life; for example, backups could be configured

with 1.5 GB of buffering. With two flash SSDs, each backup would be able to flush its

buffers to disk in less than 5 seconds, which provides a wide margin of safety.

Masters allocate and manage space for their DRAM log in units of segments. Because

new objects are always appended to the log, all new data goes to the most recently added

segment in the log, called the head segment. Whenever a master’s head segment becomes

full, the master allocates an empty 8 MB DRAM segment and registers it with the replica

manager using allocateHead. A segment also corresponds to the unit of buffering on

backups, so a replica manager’s main job is to replicate the DRAM segment identically

into the buffers of backups as data is added. This same segment allocation process is used

when a master first starts; before it can accept incoming data from client requests, it must

first register a head segment in the same way.
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After registering a new head segment, the contents of the old head segment are im-

mutable. However, the old head segment may still have active replication operations ongo-

ing for it, since the master may still be waiting for some of the data in the old head to be

replicated. Whenever a replica for an immutable segment is fully replicated to a backup, it

is flushed to disk and evicted from its DRAM buffer on the backup. The replica is never

read or written again unless it is needed for recovery.

To improve throughput, masters service read and write requests from clients on mul-

tiple threads in parallel. This allows reads to proceed in parallel, but the replica manager

also optimizes throughput for concurrent write operations by batching backup replication

requests together. To store new data, a thread copies the data to the head segment of the

in-memory log and then calls sync to wait for the data to be replicated. Meanwhile, if the

replica manager is already busy sending or waiting on replication requests to backups, then

other threads may append data to the in-memory copy of the head segment as well. Each

time the replica manager completes a replication request to a backup, it checks to see if

new data has been added to the head segment that needs be replicated. If it finds new data,

then the replica manager sends out a single replication request to the backup covering all

of the new data in the head segment. Figure 4.1 shows a detailed example of how batching

works and how a master uses sync to ensure data is durable.

4.3 Scattering Segment Replicas

One of the main challenges of fast recovery is providing high read bandwidth from disk

storage. For example, to recover 64 GB of DRAM in 1 second at least 64 GB/s of disk

bandwidth is needed. Masters solve this problem by scattering segment replicas across all

the storage devices attached to all the backups of the cluster; each log segment is backed

up on a different set of servers (Figure 4.2). When a master fails, all of the backups of

the cluster read replicas parallel, providing the high aggregate disk bandwidth needed for

recovery.

To scatter log segments, whenever a new head segment is registered, a master’s replica

manager randomly chooses enough backups from among the other servers in the cluster

to meet the log’s replication requirement (three by default). The replica manager opens a
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Figure 4.1: An example of how a master appends data to its DRAM log, how that data is replicated

to backups, and how a master ensures appended data is durable for each operation. Objects colored

gray on the master are not yet fully replicated and, thus, not guaranteed to be durable; objects

colored white are fully replicated to backups. Step 1: the master’s log contains two objects that are

already replicated to the buffers of three backups. Subsequently, a client makes a request to write

object C on the master. Step 2: the master copies the data to the head of its DRAM log and calls

sync on the offset of the log up through C. This both blocks the master thread until the data has

been replicated and notifies the replica manager that it should replicate all new log data. During the

call to sync, additional requests arrive at the master to write objects D and E (with these operations

being handled by additional threads). Step 3: Objects D and E are copied to the head of the in-

memory log. Their threads call sync on the offsets in the log up through D and E, respectively.

Replication of D and E to the backups is delayed on each backup until the backup is finished with

the earlier replication request. Shortly afterward, the backups finish the replication of object C. The

sync call for the write of C returns and the master returns to the client notifying it that the data has

been stored. Step 4: After the completion of each replication RPC, the master checks for new log

data to replicate; the master batches D and E in a single replication operation to each of the backups.

Step 5: When the master receives acknowledgment of the replication of D and E, it returns a success

notification to each of the respective waiting clients.
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Figure 4.2: Masters randomly scatter replicas of segments from their DRAM log across all the

backups of the cluster. By default, three replicas of each segment are written to disks on different

backups in addition to the copy of the segment the master keeps in DRAM. Scattering segments

enables recovery to take advantage of the high aggregate disk bandwidth of the cluster since all the

disks of the cluster can read log data in parallel.

replica on each chosen backup. Backups respond by allocating both disk and buffer space

and buffering a header for the replica. The header contains the id of the master that created

the replica and a segment id that is used during recovery.

An added benefit to this approach of scattering replicas across backups is that each

master can write at a rate that exceeds the disk bandwidth of an individual machine. When

a master fills a segment replica buffer on one set of backups, it does not wait for the buffers

to be flushed to disk before starting replication for a new segment on a different set of

backups. This allows a single master to use the disk bandwidth of many backups in parallel,

with different groups of backups replicating different segments. As an extreme example,

a single master could hypothetically write to its log using the aggregate disk bandwidth of

the entire cluster if other masters in the cluster were idle. In practice, the aggregate disk

bandwidth of the cluster is likely to exceed the rate at which a single master can transmit

data over the network.

Carefully choosing segment replica locations is critical in minimizing recovery times.

In effect, as a master creates log segments during normal operation, it is optimizing the

placement of its replicas to speed the recovery of its data in the case of its demise.
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Ideally, in order to to recover the data from a failed server’s log as quickly as possible,

all the disks in the cluster

• would begin reading replicas from disk immediately,

• would read ceaselessly at maximum rate,

• collectively would read only one replica of each segment,

• and would all finish reading their share of the data in unison.

That is, for the fastest recovery, the work of reading the replicas of the failed server from

disk should be distributed uniformly across all of the storage devices in the cluster. Unfor-

tunately, there are several factors that make this difficult to achieve:

• Replica placement must reflect failure modes. For example, a segment’s master and

each of its backups must reside in different racks in order to protect against top-of-

rack switch failures and other problems that disable an entire rack.

• Different backups may have different bandwidth for I/O: different numbers of disks,

different disk speeds, or different storage classes such as flash memory. Masters must

be aware of these differences in order to distribute replicas in a way that balances disk

read times across all storage devices during recovery.

• Masters are all writing segments simultaneously, and they must avoid overloading

any individual backup for best performance. Request load imbalance would result in

queuing delays on backups. Furthermore, backups have limited buffer space; back-

ups will ensure safety by rejecting new replicas, but unnecessary rejections would

result in lost performance.

• Utilization of secondary storage should be balanced across the cluster.

• Servers are continuously entering and leaving the cluster, which changes the pool of

available backups and may unbalance the distribution of segments.
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One possible approach is to make all replica placement decisions on the coordinator.

The coordinator has complete information on the number of servers in the cluster, their

rack placement, and their storage capacities and bandwidths. By using this information

and tracking where it had placed replicas, the coordinator could balance load evenly across

backups and balance each master’s log data across backups to minimize recovery times.

Unfortunately, making segment replica placement decisions in a centralized fashion on

the coordinator would limit RAMCloud’s scalability. For example, a cluster with 10,000

servers could back up 100,000 segments or more per second, so requests to the coordinator

to determine replica placement would become a performance bottleneck.

Instead, each master decides independently where to place each replica, using random-

ization with an additional optimization step. When a master needs to select a backup and

storage device for a segment replica, it uses the so-called “power of two choices random-

ized load balancing [38].” It chooses a few candidate devices at random from a list of all the

storage devices from all of the backups in the cluster. Then, the master selects the best from

among the candidate devices using its knowledge of where it has already allocated replicas

and information about the speed of each device. To make this possible, backups measure

the speed of their disks when they start up and provide this information to the coordinator,

which relays it on to masters. The best storage device is the one that can read its share of

the master’s segment replicas most quickly from disk during recovery. A storage device is

rejected if it is in the same rack as the master or any other replica for the same segment.

Using randomization gives almost all the desired benefits; it avoids centralization that

could become a bottleneck, and it avoids pathological behaviors. Randomization naturally

prevents masters from choosing backups in lock-step. It also balances request load and

storage utilization across the cluster.

Adding the extra refinement step to masters’ random backup selection balances ex-

pected disk reading time nearly as optimally as a centralized manager (see [38] and [2] for

a theoretical analysis). For example, if a master uses a purely random approach to scatter

8,000 segments (enough to cover 64 GB of DRAM) across 1,000 backups with one disk

each, then each disk will have 8 replicas on average. However, with 80% probability some

disk will end up with 18 replicas or more, which will result in uneven disk utilization dur-

ing recovery. Since recovery time is determined by the slowest disk, this imbalance would
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more than double master recovery time. Adding just a small amount of choice makes the

replica distribution nearly uniform and also allows for compensation based on other factors

such as disk speed; Section 6.6 shows this technique works well even when the perfor-

mance of many of the disks in a cluster is severely impaired. Choosing the best among

two candidate devices is sufficient to get most of the benefit of the approach, but masters

choose among five for each replica they place; there is little cost in doing so, and it slightly

improves balance. Specifically, considering just two choices consistently results in 9 or

10 replicas on some of the backups, which would add 80 to 160 ms to recovery time over

considering five candidates. This power of choice technique also handles the entry of new

backups gracefully. Devices on a new backup are likely to be selected (five times) more

frequently than existing devices until every master has brought the count of replicas on the

new backup into balance with the rest of its backups.

While scattering replicas randomly has several benefits, it also has a drawback; as the

cluster size scales, the system becomes increasingly vulnerable to correlated failures. For

example, even for RAMCloud cluster sizes as small as 1,000 nodes, if ten machines fail

simultaneously, all the replicas for at least one segment will be lost with near certainty. In-

tuitively, as more servers are added to the cluster, more segments must be scattered across

the cluster. Each of these segments is stored on some 4-combination of the servers of the

cluster (the master and its three backups). If the entire set of servers for any of these 4-

combinations is lost, then some data will be unrecoverable. Because a cluster of 1,000

nodes will have nearly 8 million segments at capacity, even with just ten machines simul-

taneously unavailable, it is exceedingly likely that for at least one of these 4-combinations

all four of its servers are among the ten that have failed. Thus, it is almost certain for at

least one segment that all of its replicas would be unavailable. This problem affects not

only RAMCloud but also other popular data center filesystems like HDFS [46]. The details

of this problem are outside the scope of this dissertation, but a full analysis as well as a

solution that has been integrated into RAMCloud can be found in [8].

Ideally, only one replica of each segment would be read from storage during recovery;

otherwise, backups would waste valuable disk bandwidth reading unneeded data, slowing

recovery. Masters solve this by marking one replica of each segment they create as the
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primary replica. Only the primary replicas are read during recovery unless they are un-

available, in which case backups read the redundant replicas on demand (§5.4.2). This

typically happens when the backup that contained a primary replica crashes, or if a primary

replica is corrupted on storage. The recovery time balancing optimizations described above

consider only primary replicas, since the other replicas are never intended to be read. The

redundant replicas of a segment are scattered uniformly randomly across all the backups of

the cluster, subject to the constraint that they are not placed on backups in the same rack

as one another, in the same rack as the master, or in the same rack as the backup of the

primary replica.

Another alternative would be to store one of the segment replicas on the same machine

as the master rather than forcing to all replicas to be stored on remote machines. This would

reduce network bandwidth requirements for replication, but it has two disadvantages. First,

it would reduce system fault tolerance: the master already has one copy in its DRAM, so

placing a second copy on the master’s disk provides little benefit. If the master crashes, the

disk copy will be lost along with the memory copy. It would only provide value in a cold

start after a power failure. Second, storing one replica on the master would limit the burst

write bandwidth of a master to the bandwidth of its local disks. In contrast, with all replicas

scattered, a single master can potentially use the disk bandwidth of the entire cluster (up to

the limit of its network interface).

4.4 Log Reassembly During Recovery

Recovering from a log left behind by a failed master requires some reassembly steps be-

cause the log’s contents are scattered. First, the coordinator must find replicas of the failed

master’s log segments among the backups of the cluster. Then, the coordinator must per-

form checks to ensure that none of the segments are missing among the discovered replicas.

A treatment of the more complex log consistency issues that arise due to failures is deferred

until Section 4.5, which details how masters and the coordinator prevent stale, inconsistent,

or corrupted replicas from being used during recovery.
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4.4.1 Finding Log Segment Replicas

Only masters have complete knowledge of where their segment replicas are located, but this

information is lost when they crash; as described in Section 4.3, recording this information

on the coordinator would limit scale and hinder common-case performance. Consequently,

the coordinator must first find the replicas that make up a log among the backups of the

cluster before recovery can begin.

At the start of recovery, the coordinator reconstructs the locations of the crashed mas-

ter’s replicas by querying all of the backups in the cluster using thefindReplicasForLog

operation. Each backup maintains an in-memory list of replicas it has stored for each mas-

ter, and quickly responds with the list for the crashed master. The coordinator aggregates

the locations of the replicas into a single map. By using RAMCloud’s fast RPC system and

querying multiple backups in parallel, the replica location information is collected quickly.

Using broadcast to locate replicas among backups may sound expensive; however,

broadcasting to the entire cluster is already unavoidable at that start of recovery, since

all of the servers of the cluster participate. In fact, the cost of this broadcast is mitigated,

since the backups of the cluster begin reading replicas from storage immediately after re-

ceiving the broadcast; this allows backups to begin loading and processing recovery data

even while the coordinator finishes setting up the recovery.

4.4.2 Detecting Incomplete Logs

After backups return their lists of replicas, the coordinator must determine whether the

reported segment replicas form the entire log of the crashed master. Redundancy makes

it highly likely that the entire log will be available, but the system must be able to detect

situations where some data is missing (such as if multiple servers crash simultaneously).

RAMCloud avoids centrally tracking the list of the segments that comprise a master’s

log by making each log self-describing; the completeness of the log can be verified using

data in the log itself. Each new head segment added to the log includes a log digest, which

is a list of identifiers for all segments in the log at the time the segment was created. The

log digest contains the exact list of segments that must be replayed in order to recover

to a consistent state. Log digests are small (less than 1% storage overhead even when
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uncompressed, assuming 8 MB segments and 8,000 segments per master).

During the replica discovery phase of recovery, as part of findReplicasForLog,

each backup returns the most recent log digest from among the segments it is storing for

that log. The coordinator extracts the log digest from the most recently written segment

among those on all the backups, and it checks the list of segments in the log digest against

the list of replicas it collects from the backups to ensure a complete log has been found.

One threat to this approach is that if all the replicas for the most recent segment in the

log are unavailable, then the coordinator could unknowingly use an out-of-date log digest

from a prior segment. In this case, the most recent digest the coordinator could find would

not list the most recent segment, and it would have no indication that a newer segment or

log digest ever existed. This must be handled, otherwise the system could silently recover

to an inconsistent state that may not include all the data written before the master crashed.

To prevent this without resorting to centralization, a master marks replicas that contain

an up-to-date digest and clears the mark on each replica when its digest becomes out-of-

date. Figure 4.3 shows how this works as a master adds a new head segment to its log.

When a master uses allocateHead to transition to a new head segment, a log digest

is inserted and each of the replicas is marked as open on backups. The open bit indicates

that the digest found in the replica is safe for use during recovery. Only after all of the

replicas for the new segment contain the new log digest and have been marked as open

does the master mark the replicas for the old head segment in the log as closed. This

approach guarantees that the replicas from at least one segment are marked as open on

stable storage; if the coordinator cannot find an open replica during recovery, then the log

must be incomplete.

One complication with this approach is that open replicas from two different segments

may be found during recovery: replicas from the head segment or its predecessor may

simultaneously be marked as open on stable storage. One additional constraint ensures this

is safe. The log ensures that no data is ever replicated into a segment until all of the replicas

of the preceding segment have been marked closed (Section 4.5.3 describes what happens

if this is impossible due to an unresponsive backup). As a result, the coordinator can use

any of the log digests it finds in open segments; if a newer open head segment had existed

and all of its replicas were lost, then the replicas could not have contained object data.
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Figure 4.3: When adding a segment to its log, a master orders operations to ensure that if it crashes

at any point, it will always leave behind an up-to-date log digest that covers all the segments in the

log that contain data needed for recovery.

Step 1: A master has a log that contains two segments: 7 and 19. Segment 19 is the current head

segment and is full. The master adds a new segment to its log using allocateHead.

Step 2: The master injects a new log digest into Segment 20 upon its registration and waits for the

digest to be fully replicated on all of the segment’s backups.

Step 3: After the digest in Segment 20 is replicated, the master sends a message to the backups

for Segment 19 marking it as closed. During recovery, log digests from closed replicas are ignored.

After this step, only the log digest in replicas of Segment 20 will be used during recovery.

Step 4: The master can safely begin to add data to Segment 20, knowing that the data stored in it is

guaranteed to be recovered.

If the master fails between Steps 2 & 3: Recovery could use the digest from replicas of Segment 19

or 20, but either is safe since Segment 20 contains no data.

If the master fails after Step 3: Recovery is guaranteed to use the digest in replicas of Segment 20,

so the master can safely add data to the segment.
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If an open replica containing a log digest cannot be found or a replica for each segment

in that digest cannot be found, then RAMCloud cannot recover the crashed master. In

this unlikely case, RAMCloud notifies the operator and waits for backups to return to the

cluster with replicas of the missing segments. Alternatively, at the operator’s discretion,

RAMCloud can continue recovery with loss of data. Section 5.6.1 details how RAMCloud

handles multiple servers failures where some data is unavailable.

So far these rules describe how to prevent RAMCloud from recovering when it is unsafe

to do so; however, a dual to that concern is to ensure, to the extent possible, that RAMCloud

always recovers if it safe to do. For example, the replication rules given earlier prevent a

master from replicating data into a segment until all preceding segments are closed, but

there is no limit on how far ahead a master can allocate empty open segments on backups.

This allows masters to open several segments in advance, working ahead to hide the initial

cost of contacting backups. If a master works ahead to create several open segments that

only contain a log digest and no data, then the system is prone to detecting data loss even

when none has occurred. The problem occurs when the log digest for one of these empty

segments is flushed to backups before the log digest for a preceding empty segment. The

log digest from the later segment will be found on recovery, but it includes the preceding

segment that has yet to be created on backups. During recovery, the coordinator would

assume data had been lost when it had not (since the missing segment must have been

empty). To prevent this problem while still allowing masters to open log segments in

advance, replicas are not opened on backups for a segment until replicas for all segments

preceding it in the log have been opened on backups. That is, replicas for segments are

always opened in log order on backups.

4.5 Repairing Logs After Failures

A master’s log is key in recovering from server failures, but failures can damage the log.

Each master must take corrective steps after the loss or corruption of log segment repli-

cas. Section 4.5.1 describes how a master recreates lost replicas in order to maximize the

chance that the coordinator will find a complete log if the master crashes. Subsequent sub-

sections describe how inconsistent replicas can arise under specific failure scenarios, and
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how RAMCloud prevents these replicas from being used during recovery.

RAMCloud allows recovery to use any available replica of a segment in order to im-

prove the chance that master recovery will be possible after a crash. This read-any property

creates a tension between durability and availability; only requiring a single replica of each

segment for recovery improves reliability, but it also requires the immediate correction of

any inconsistencies before operation can continue after a failure. The set of replicas that

RAMCloud can use for recovery must be consistent at all times, and this constraint guides

the steps masters take to safeguard their logs when a server fails.

4.5.1 Recreating Lost Replicas

Each server acts as both a master and a backup, so when a server fails not only are the

DRAM contents of the master lost, but segment replicas stored on its disk are lost also.

Without action, over time replica loss could accumulate and lead to data loss. Masters

restore full durability after backup failures by recreating lost replicas.

The coordinator notifies all of the masters whenever a backup fails. Every log is likely

to have had at least some replicas on the failed backup, since masters scatter replicas across

the entire cluster. Each master checks its segments to identify those that had a replica on

the failed backup, and it begins creating new replicas in the background.

Recovering from a lost backup is faster than recovering from a lost master. New replicas

are scattered across all of the disks in the cluster, and all of the masters recreate lost replicas

concurrently. If each master has 64 GB of memory then each backup will have about

192 GB of data that must be rewritten (assuming 3 replicas for each segment). A cluster

with 200 backups each having 1 GB of unused durable buffer space can store the new

replicas in less than one second; maintaining an additional 1 GB of durable buffer space

would require a few seconds of spare battery backup capacity, which should be practical

for most deployments. For comparison, master recovery requires about 30% more disk

I/O. In master recovery, 256 GB of data must be transferred to recover the DRAM of a

failed master: 64 GB must be read, then 192 GB must be written for replication while

incorporating the data into the logs of the recovery masters (§5.4).

Lost replica recreation is not on the critical path to restoring availability after a failure,
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since the replicas on a backup are stored redundantly on other backups. However, rapidly

recreating lost replicas improves durability, because it reduces the window of time that seg-

ments are under-replicated after failures (an analysis of this effect is given in Section 6.7).

On the other hand, aggressively recreating replicas increases peak network and disk band-

width utilization after failures. In particular, large network transfers are likely to interfere

with normal, client requests, which are small. In the future, it will be important that RAM-

Cloud retain low-latency access times and high performance even with high background

network bandwidth utilization, though this will require innovation at the network transport

layer that is deferred to future work.

4.5.2 Atomic Replication

Unfortunately, using the normal segment replication routines to recreate segment replicas

could lead to inconsistencies when the cluster experiences repeated failures. If a master

fails while in the middle of recreating a replica on a backup, then the partially recreated

replica may be encountered while recovering the master. RAMCloud assumes it can re-

cover using any available replica for each of the segments, so it must ensure these incon-

sistent replicas are never used.

A master prevents these inconsistencies by recreating each lost replica atomically; such

a replica will never be used unless it has been completely written. To implement this, a

master includes a flag in each replication request that indicates to the backup that the replica

is incomplete. During recovery, backups check this flag and do not report incomplete

replicas to the coordinator. Once the data in the backup’s durable replica buffer is complete

and identically matches the segment in the master’s memory, the master clears the flag on

the replica. Effectively, the replica atomically becomes available for use in recovery when

it becomes consistent with the master’s DRAM copy of the segment.

4.5.3 Lost Head Segment Replicas

Replacing lost replicas restores durability after failures, but the lost replicas themselves

are also a problem; if they are found later and used in a master recovery, then they could

cause recovery to an inconsistent state. If a master is replicating its head segment to a
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backup that fails, it recreates the replica on another backup and continues operation. In the

meantime, the backup containing the lost replica may restart, but the lost replica stored on

it may be out-of-date. The replica would be missing updates the master had made to its

head segment since the backup first failed. If the master were to fail, then recovery could

use this out-of-date replica and recover to an inconsistent state.

One solution to this problem is to have masters suspend all update operations until the

backup containing the lost replica restarts. However, this is impractical, since the data on

masters must be highly available. A master cannot be suspend operations for the minutes

it could take for a backup to restart. Worse, a master cannot be sure if a backup with a lost

replica will ever restart at all.

Another approach is to never use replicas found on storage after a backup restarts; this

would ensure that any replicas that missed updates while inaccessible would not be used

during recovery. Unfortunately, this approach does not work under correlated failures. The

simplest example is a power failure. If all the servers in a cluster were forced to restart, then

none of the replicas found on disk could be used safely. The operator would be faced with

a difficult choice; if she restarted the cluster using the replicas found on disk, the system

might be in an inconsistent state. The only other option would be to discard all of the data.

Ideally, even if all of the replicas for a segment were temporarily unavailable, RAM-

Cloud would recover if consistent replicas of the segment were later found on disk. To

make this possible, masters take steps to neutralize potentially inconsistent replicas. By

eliminating problematic replicas, masters can resume performing client requests quickly

while still ensuring consistency, and recovery can still use the up-to-date replicas found on

backups when they restart while ensuring that stale replicas are never used. When a master

discovers that a replica of its head segment has become unavailable, it takes the following

steps to neutralize potentially inconsistent replicas.

1. First, the master suspends replication and acknowledgment for all ongoing client op-

erations. This is because a replica exists on the failed backup that cannot be changed

or removed, so ongoing operations that were not known to have been recorded to

that replica must be held until the lost replica can be neutralized. If master recovery

occurs before the lost replica is neutralized, it is safe to use any of the replicas in-

cluding the lost replica, since all of them include the data for all acknowledged client
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operations. Barring additional failures, the master only has to hold operations for a

few milliseconds before it is safe to resume normal operation.

2. Second, the master atomically creates a new replica elsewhere in the cluster just

as described in Section 4.5.2. This step eliminates the master’s dependency on the

lost replica to fulfill its replication requirement; after this new replica is created, the

master is free to kill off the lost replica without jeopardizing durability.

3. Third, the master neutralizes the lost replica. This is a challenge, since the failed

backup cannot be contacted. Instead, the master informs the coordinator of the lost

replica, and the coordinator agrees not to use the replica during recovery. Minimizing

the burden on the coordinator is critical; more detail on how this is achieved is given

below.

4. Finally, after neutralizing the out-of-date replica, the master resumes normal opera-

tion and begins replicating and acknowledging client requests.

One possible approach masters could use to invalidate potentially inconsistent replicas

is to keep an explicit list of “bad” replicas on the coordinator for each master’s log. If

a master were informed of the crash of a backup to which it was actively replicating a

segment, the master would add a pair to the list on the coordinator that contains the affected

segment id and id of the failed backup server. During recovery, the coordinator would

ignore any replicas that are part of the invalid replica list for the crashed master.

Unfortunately, these invalid replica lists would be cumbersome to maintain; each list

would need to be part of the coordinator’s persistent state, and when a master freed a

segment that had a replica in the list, the corresponding list entry would need to be removed

so that the list would not grow without bound.

Instead, each master stores a single log version number on the coordinator to achieve

the same effect. Figure 4.4 gives an illustration of how this mechanism works. As a master

replicates its head segment, its replicas are stamped with the master’s current log version.

During recovery, the coordinator compares the failed master’s log version number with the

versions the master stamped on each replica to ensure they are up-to-date. When a master

loses a replica for its head segment, it increments the local copy of its log version number,
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Figure 4.4: An example of how a master and the coordinator work together to neutralize inconsis-

tent replicas. Inconsistent replicas arise when a master is actively replicating its head segment to

a backup that fails. In this example the master’s goal is to maintain two on-backup replicas of its

segment. Replicas lost due to server failures are indicated with an ‘X’.

Step 1: A master has a partially filled segment tagged with log version number 2. Each of its two

backups is fully up-to-date and consistent with the master’s in-memory segment. A client starts a

write operation, which requires the master to append data to its in-memory head segment.

Step 2: The master successfully replicates the newly appended data to its first backup, but the

second backup fails before the replication operation is acknowledged to the master.

Step 3: The master sends a new version number of 3 to its first backup, which tags its replica with

the new version number. Finally, the master recreates a new, up-to-date replica on a third backup,

elsewhere in the cluster.

Step 4: The master notifies the coordinator that its log version number is now 3, and it waits for an

acknowledgment from the coordinator that it will never use replicas with a lower version number.

Only after this point can the master safely acknowledge the pending client write.

Step 5: Afterward, if the master and both backups were to crash, and the backup containing the

out-of-date replica were to restart the coordinator would not use the replica.

Importantly, a crash at any point in this sequence is safe. If the master were to crash during steps 2,

3, and 4, then the master may or may not be recovered with the ongoing write operation; however,

since the write has not been acknowledged, this is consistent with the client’s expectations. After

step 4, the client is guaranteed to see the effects of its write even if the master fails and recovers.
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it recreates the replica elsewhere, and it updates the log version number on the remaining

available replicas for its head segment. Afterward, it updates its log version number on the

coordinator as well; this ensures that the coordinator will discard any replicas with a lower

log version during recovery. Replicas marked as closed on stable storage are excluded

from this protocol; they can never be a source of inconsistency since they are immutable

and are recreated atomically when lost. To achieve this, masters set the log version number

of replicas to ∞ as they close them.

While this approach involves the coordinator, it does not significantly limit the scala-

bility of the cluster, since it only requires RPCs to the coordinator on failures (as opposed

to regularly during normal operation). A master has a single head segment that it is (by de-

fault) triplicating across the backups of the cluster, so a typical backup will only have three

replicas being actively replicated to it at a time from the head segments of all of the masters

of the cluster. Therefore, a typical backup failure will only result in about three RPCs to the

coordinator to invalidate replicas; this is a trivial load even in a cluster of 10,000 machines

where server failure is expected about once every 15 minutes.

4.5.4 Preventing Inconsistencies Due to Overloaded Backups

As mentioned in Section 4.2, overloaded backups may need to reject replication operations

from masters. A backup is overloaded when

• it has insufficient disk space to store a replica,

• it has insufficient buffer space to store a replica, or

• it has insufficient network bandwidth to accept new replica data quickly.

Rejecting replication requests is a form of transient failure; if backups arbitrarily refuse

replication operations then the replicas they store may become inconsistent.

To prevent inconsistencies, a backup may only reject a master’s initial replication re-

quest for each replica. If a backup rejects this first request to store data for a replica, then

it never records any state about the segment and the master retries elsewhere. However, if

the backup acknowledges it has accepted and replicated the data in the first request, then it

must have already reserved all resources needed to ensure the durability of the replica. This
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means backups must always allocate the needed disk and buffer space for the replica before

they respond to an replication request that starts a new replica. Once a replica is opened on

a backup, all well-formed replication requests for that replica by the master are guaranteed

to succeed in the absence of a serious failure (for example, a network partition or a failed

disk), so replicas never become inconsistent due to rejected replication operations.

4.5.5 Replica Corruption

Finally, RAMCloud must address inconsistencies that arise due to storage or media corrup-

tion. Masters prevent the use of corrupted replicas by embedding a checksum in metadata

stored along with each replica. The checksum covers log entry types and lengths in the

prefix of the replica up through a length specified in the metadata. The metadata itself (ex-

cluding the checksum field) is covered by the checksum as well. Upon reading a replica

during recovery, a backup computes a checksum of the metadata and the log entry types

and lengths stored in the specified prefix of the replica and compares the result with the

checksum stored in the metadata. If the checksums do not match, then the replica will

not be used. Object data is not covered by the checksum. Each object is covered by an

individual checksum that is checked by recovery masters during recovery (§5.6.2).

4.6 Reclaiming Replica Storage

As clients append new objects to a log, these new object values supersede older values in

the log, and logs accumulate entries over time that waste space both in DRAM and on disk.

Since recovery only depends on the most recent value associated with each key, these stale

values are not needed. Eventually, this wasted space grows and must be consolidated and

reclaimed for reuse with new objects.

To combat this, masters use cleaning techniques similar to those used in log-structured

filesystems [42] to “repack” log data and reclaim space. Each master keeps a count of

unused space within each segment, which accumulates as objects are deleted or overwritten.

The master reclaims wasted space by occasionally invoking a log cleaner. The cleaner

selects one or more segments to clean and rewrites the live entries from them into a smaller
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set of new segments. Afterward, the master is free to reuse the DRAM that contained

the cleaned segments. Similarly, replicas of the cleaned segments are no longer needed;

the master contacts backups that hold these replicas, notifying them that it is safe to reuse

the space that the replicas occupy on storage and any associated buffers. The details and

policies of the log cleaner are analyzed elsewhere [43].

Typically, masters notify backups when it is safe to reuse storage space, but due to

server failures, replicas cannot always be removed from backups using explicit free RPCs

from the masters that created them. There are two cases when a replica must be freed by

some other means: when the master that created it crashes (§4.6.1), and when a backup

with the replica on its storage crashes and restarts later (§4.6.2).

4.6.1 Discarding Replicas After Master Recovery

When a master crashes, all of the backups are likely to contain some replicas from the

crashed master, and eventually these replicas must be freed from storage. However, the

normal-case approach of using explicit free notifications to backups does not work, since

the master that created them is gone. At the same time, RAMCloud needs these replicas

immediately after a master failure to perform recovery, so backups must not be overly

eager to discard replicas when masters crash. As a result, backups are notified when a

failed master has been recovered. Afterward, the replicas of the master’s log segments are

no longer needed and backups discard them.

To make this possible, each backup tracks changes to a server list that contains the iden-

tities, statuses, and network addresses of other cluster members. The coordinator maintains

the authoritative copy of this list and disseminates updates to cluster members as server

statuses change. Initially, when a server joins the cluster it is marked as up. When a server

crashes, its entry in the server list is marked as crashed until all tablets owned by the crashed

master are recovered elsewhere. At that point, the server list entry is removed. During the

course of normal operation, a backup retains replicas from a server that is marked as up

or crashed in the server list, and it reclaims space used by replicas from a server that not

present in the server list (which indicates the server is down).
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4.6.2 Redundant Replicas Found on Storage During Startup

A second problem arises because of backup failures. As described in Section 4.5.1, masters

recreate replicas that were stored on failed backups. If masters have already recreated the

replicas stored on a failed backup before a new backup process restarts on the same node,

then the newly starting process may find replicas on storage that are no longer needed. On

the other hand, if multiple servers failed at the same time, then a restarting backup process

may find replicas on storage that are needed to recover some failed masters: all of the other

replicas of some segments may have been lost before they could be recreated.

Therefore, each backup scans its storage when it first starts up, and it checks replicas left

behind by any old, crashed RAMCloud process on that node to see if they are still needed.

As before, for each of the replicas it finds on disk, it uses the server list to determine whether

the replica should be retained or discarded. Just as during normal operation, replicas for a

crashed server must be kept, since the server may be under active recovery. Replicas for a

down server can be discarded, since its data must have been recovered elsewhere.

Replicas from a master that is still up present a challenge. If a replica from a server

marked as up in the server list is found on storage, then the server that created it may have

already recreated the replica elsewhere, in which case it can be discarded. However, it is

also possible that the master has not yet recreated the lost replica, in which case the replica

found on storage may still be needed if the master crashes. For example, this occurs when

a backup finds a replica on storage for a master that is marked as up in the backup’s server

list, but the master has actually crashed and the backup has not been notified yet; in that

case, the replica on storage may be critical for recovering the failed master and must not be

discarded by the backup.

On startup, if a backup finds a replica on storage that was created by a master that is

still up in the backup’s server list, then the backup queries the originating master directly

to determine whether the replica is safe to discard or not. When queried about a specific

replica, a master informs the calling backup that it is safe to discard the replica if the

master’s corresponding segment is already adequately replicated. If the segment is still

undergoing replication, then the master tells the backup to keep the replica. In this case,

the backup will recheck with the master for this replica periodically to see if the segment
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has been fully replicated (in the expectation that the master will eventually recover from the

loss of the replica making it safe to discard). If the master fails in the meantime, then the

backup reverts to the usual rules; it retains the replica until the master has been recovered.

This process of querying replica statuses from masters only lasts briefly when a server starts

until all replicas found on storage have been recovered elsewhere by masters or the masters

from which they originated have crashed; after that, replicas for servers that are up in the

server list are retained until explicitly freed, as usual.

This approach of querying the masters requires one additional constraint. The problem

is that when queried about whether a particular replica is needed, a master’s reply is only

based on whether or not the corresponding segment is fully replicated. This presupposes

that the master has already been informed that the backup crashed. However, this presup-

position could be wrong: it may be the case that the master has yet to receive or process the

notification of the failure that led to the restart of the backup. If this is the case, then the

master is counting the old replica found on storage as a valid replica for the segment. If the

master reports to the backup that the segment is fully replicated and the restarting backup

process deletes it, then the segment will be under-replicated until the master receives the

server failure notification and recreates the replica elsewhere.

To solve this, the coordinator guarantees that all servers in the clusters will learn of a

backup’s crash before they learn that the backup has been restarted. When a server process

first starts up and enlists with the coordinator, it provides the server id of the prior RAM-

Cloud server process that ran on that machine, which it recorded on its storage device. The

coordinator ensures that when it sends server list change events to the cluster members, the

failure notification for the former server precedes the enlistment notification for the server

that replaces it. After enlistment, the restarting server updates the server id on its storage,

so that the next crash will be handled correctly.

To ensure that a master has been informed of the failure of a restarting backup before

it replies to a replica status query, the master ensures that a querying backup is up in its

server list. The ordering constraint on server list updates ensures that if the backup is up in

the master’s server list, then the master must have processed the failure notification about

the failed process that the new backup is replacing. When a master processes a failure

notification of a backup, it immediately “forgets” about replicas on the failed backup and
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begins replication elsewhere for affected segments. Hence, if a backup querying a master

about a replica is up in the server list of the master and the master is not actively replicating

the segment, then the master must have already re-replicated the segment elsewhere. When

a querying backup is not in a master’s server list, then the master tells the backup to ask

about the replica again later. This ensures that a master never prematurely tells a backup to

discard a replica.

4.7 Summary

Each master in RAMCloud uses a log that provides high durability for client data, low-

latency client reads and writes during normal operation, and high bandwidth reading for fast

recovery. Masters store one copy of their log entirely in local DRAM to support low-latency

data access. Masters replicate their logs for durability using cheap disk-based storage on

other nodes, called backups. Because backups buffer updates (requiring them to briefly

rely on battery backups during power failures), masters can durably replicate objects with

latencies limited by network round trip times rather than hard disk seek times. To enable

the high bandwidth while reading the log needed for fast recovery, masters divide their logs

into segments and scatter replicas of them across the entire cluster, so replicas can be read

from all the disks of the cluster in parallel.

A master’s replica manager works in the background to maintain redundancy of log

segments as nodes fail, and it takes steps to ensure the master will only be recovered when

a consistent and up-to-date view of its log is available. Masters inject self-describing meta-

data (log digests) into logs so that they can detect data loss during recovery. When backups

crash and restart, some of the replicas they hold on storage may become stale. Masters

ensure these stale replicas are never used during recovery by tagging each replica with a

log version number that is also stored on the coordinator. The coordinator uses the log ver-

sion number to ensure that recovery only uses up-to-date replicas. The log version number

on the coordinator is only updated by a few servers in the cluster when a backup fails, so

it will not become a bottleneck, even in large clusters. By containing the complexity of

fault-tolerance and consistency, replica managers ease the task of recovery.

Replicas stored on backups are typically freed by a master’s log manager when they are
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no longer needed, but space reclamation must happen in other ways when masters crash.

Backups receive server status notifications from the coordinator. When a master has been

fully recovered, backups discard the replicas created by that master that are still on storage.

When a backup fails and a new backup process restarts on the same node, some of the

replicas found on storage may no longer be needed. Backups query the originating master

for each on-storage replica to see if it is still needed. Once the master has recreated the

replica elsewhere in the cluster, the old replica is removed from the restarting backup’s

storage.

The next chapter describes how RAMCloud uses these logs to recover the contents of a

failed master in just 1 to 2 seconds.



Chapter 5

Master Recovery

When a master crashes in RAMCloud, the data it contained is unavailable until it can be

recovered into DRAM on other servers in the cluster. As described in Chapter 4, each

master stores the objects in its DRAM to a log that is stored redundantly across all of the

disks of the cluster. This chapter details how RAMCloud uses that log to restore availability

when a master fails.

RAMCloud uses fast recovery instead of relying on expensive in-memory redundancy

or operating in a prohibitively degraded state using data on disk. If master recovery is

no longer than other delays that are common in normal operation and if crashes happen

infrequently, then crash recovery will be unnoticeable to applications. RAMCloud’s goal

is to recover failed servers with 64 to 256 GB of DRAM in 1 to 2 seconds. For applications

that deliver content to users over the Internet, this is fast enough to constitute continuous

availability.

RAMCloud’s master failure recovery mechanism relies on several key concepts that

make it fast and safe while minimizing complexity.

• Leveraging scale: Most importantly, RAMCloud leverages the massive resources

of the cluster to recover quickly when masters fail. No single machine has the disk

bandwidth, network bandwidth, or CPU cycles to recover the contents of a crashed

server quickly. Recovery takes advantage of data parallelism; the work of recovery

is divided across thousands of backups and hundreds of recovery masters, and all of

the machines of the cluster perform their share of recovery concurrently.

49
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• Heavy pipelining: Not only is recovery parallelized across many machines to mini-

mize recovery time, but equally critically, each server pipelines its work to efficiently

use all of its available resources. Each machine overlaps all of the stages of recovery

data processing; during recovery, a single server may be loading data from disk, pro-

cessing object data, sending log entries out over the network, receiving log entries

from other machines over the network, reconstructing data structures, and sending

out data for replication, all at the same time.

• Balancing work: Recovery time is limited by the server that takes the longest to

complete its share of work, so precisely balancing recovery work across all the

servers of the cluster is essential for fast recovery. Large scale makes this a chal-

lenge; with hundreds or thousands of machines working together, recovery must op-

erate with minimal coordination, yet each individual machine must stay busy and

complete its share of work at about the same time as the rest of the cluster.

• Autonomy of servers: Each server makes local choices to the extent possible during

recovery. This improves scalability since the cluster needs little coordination. After

initial coordination at the start of recovery, backups and recovery masters are given

all the information they need to work independently. Recovery masters only call back

to the coordinator when their share of recovery is complete.

• Atomicity and collapsing error cases: In a large-scale cluster, failures can hap-

pen at the worst of times; as a result, RAMCloud must operate correctly even when

failures happen while recovering from failures. Failure handling is simplified dur-

ing recovery by making the portion of recovery on any individual server atomic and

abortable. That is, if a server participating in recovery crashes or encounters a prob-

lem, it can give up on its share of the work without harm. Portions of a recovery that

were aborted are retried later, hopefully when the conditions that prevented success

have subsided. This reduces the number of exceptional cases that recovery must han-

dle, and it allows most issues to be handled by retrying recovery. Similarly, multiple

failures and total cluster restart are handled using the master recovery mechanism,

which eliminates the need for a separate, complex mechanism and exercises the mas-

ter recovery code more thoroughly.
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Figure 5.1: The work of recovery is divided across all the backups of the cluster and many recovery

masters. Each backup reads segment replicas from its disk and divides the objects into separate

buckets for each partition. Each recovery master only fetches the objects from each backup for the

keys that are part of its assigned partition.

5.1 Recovery Overview

When a RAMCloud storage server crashes, the objects that had been present in its DRAM

must be recovered by “replaying” the master’s log before the objects can be accessed by

clients again. This requires reading log segment replicas from backup storage back into

DRAM, processing the records in those replicas to identify the current version of each live

object, and reconstructing a mapping from each key to the current version of each object.

The crashed master’s data will be unavailable until the objects from its log are read into

DRAM and a mapping from each key to the most recent version of each object has been

reconstructed.

As described in Chapter 3, recovery must overcome two key bottlenecks. First, data

must be read from storage at high bandwidth in order to recover an entire server’s DRAM

in 1 to 2 seconds. To solve this, each master scatters its log data across all of the disks of

the cluster as 8 MB segments. This eliminates disks as a bottleneck, since the log data can

be read from all of the disks of the cluster in parallel. Second, no single server can load

all of the failed master’s data into DRAM and reconstruct a hash table for the objects in

1 to 2 seconds. Consequently, the failed master’s data is partitioned across 100 or more
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recovery masters by key. Each recovery master replays the log entries for a subset of

the crashed master’s keys, reconstructs a hash table for its assigned portion of the failed

master’s key space, and becomes the new home for the recovered objects. This allows

RAMCloud to spread the work of replaying log data across hundreds of NICs, CPUs, and

memory controllers. Figure 5.1 illustrates how recovery is spread across all of the machines

of the cluster and how data is loaded to disks and shuffled among recovery masters during

recovery.

As an example, a cluster of 1,000 machines should be able to recover a failed server

with 64 GB of DRAM in less than one second. Recovery masters process data as it is

loaded by backups. With a single 100 MB/s disk on each server, a failed server’s log can

be read in about a half of a second. Similarly, 100 recovery masters can load that data into

memory in about a half of a second using a 10 Gbps network. Furthermore, backups and

recovery masters overlap work with each other to minimize recovery time.

Overall, recovery combines the disk bandwidth, network bandwidth, and CPU cycles of

many of machines in a highly parallel and tightly pipelined effort to bring the data from the

crashed server back online as quickly as possible. The coordinator supervises the recovery

process, which proceeds in four phases that will be described in detail in the sections that

follow:

1. Failure detection: When a server crashes, the first step in recovery is detecting the

failure. Failure detection must be fast since any delay in detecting a failure also

delays recovery. To speed detection, servers monitor one another, and peers of a

crashed server detect its failure and report it to the coordinator.

2. Setup: During the setup phase of recovery, the coordinator decides how the work

of recovery will be divided across the machines of the cluster, and it provides each

machine will all the information it needs to perform its share of the work without

further coordination. During this phase, the coordinator tells backups to start loading

replicas, verifies the complete log is available on backups, and assigns the crashed

master’s tablets to recovery masters.

3. Replay: The replay phase is both data-parallel and pipelined. Each recovery master

sends requests to several backups in parallel to fetch the objects relevant to the portion
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of the crashed master it is recovering. Recovery masters incorporate the data returned

by backups into their log and hash table and re-replicate the data as part of their log,

just as during normal operation. At the same time, backups load segment replicas

from the crashed master stored on disk, bucket objects by partition, and accept new

replica data. Machines operate independently of the coordinator during the replay

phase.

4. Cleanup: Each recovery master notifies the coordinator when it finishes replay, and

it begins servicing requests for the portion of the tablets that it recovered. Once all

of the recovery masters complete and all of the partitions of the key space have been

recovered, the backups of the cluster begin to reclaim the on-disk storage occupied

by the failed master’s log and free up any state and buffers used as part of recovery.

If recovery fails for any of the partitions of the crashed master, then the log data is

retained and recovery is retried later.

The following sections provide detail on each of these phases.

5.2 Failure Detection

Server failures must be detected quickly in order to recover quickly, since detection time

delays recovery. Whereas traditional systems may take 30 seconds or more to decide that a

server has failed, RAMCloud must make that decision in a few hundred milliseconds. Fast

failure detection also improves durability, since the recreation of lost replicas from failed

backups starts more quickly.

RAMCloud detects failures in two ways. First, if a server is slow in responding to

an RPC, the caller (either a RAMCloud client or another RAMCloud server) pings the

callee periodically in the background until the RPC response is received. These pings are

application-level RPCs (as opposed to lower-level ICMP pings that would only be serviced

by the kernel), so they provide some measure of assurance that the remote RAMCloud

server is still functional. If the callee is responsive to the ping requests, then the caller

assumes the callee is still alive and that the callee is still processing the caller’s RPC request.

If a ping request times out, then the caller assumes the callee has crashed.
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When a one server suspects another has failed, it notifies the coordinator, which then

investigates the server. This extra step prevents servers from being detected as failed when

a communication problem between two servers is due to a problem at the caller rather than

the callee. After receiving a failure suspicion notification, the coordinator issues ping re-

quests to the suspected server. If the coordinator’s application-level ping requests timeout,

then the server is marked as failed and the coordinator initiates recovery for it.

Unfortunately, this first technique only detects the failure of servers that are actively ser-

vicing RPCs; if some servers only service RPCs infrequently, then the approach described

above may delay recovery. RAMCloud uses a second technique so that these failures can

be detected more quickly. Cluster members continuously ping one another (at application-

level) to detect failures even in the absence of client activity; each server periodically issues

a ping RPC to another server chosen at random. Unanswered ping requests are reported

to the coordinator. Just as before, the coordinator verifies the problem by attempting to

directly ping the server, then initiates recovery if the server does not respond.

Randomizing ping operations means the detection of failed idle servers is only prob-

abilistic. There is some chance that failed idle servers could go undetected indefinitely.

However, this is exceedingly unlikely in practice. The probability of detecting a crashed

machine in a single round of pings is about 63% for clusters with 100 or more nodes; the

odds are greater than 99% that a failed server will be detected within five rounds.

As an alternative, the coordinator could periodically ping all cluster members to en-

sure their liveness. The current coordinator can broadcast to 80 machines in 600 µs by

using low-latency Infiniband messaging and by sending pings in parallel. We expect this

approach to scale to broadcast to 10,000 nodes in about 75 ms, so it is plausible for the

coordinator to monitor the liveness of a large cluster. However, the coordinator would need

to keep its network card mostly utilized to detect failures quickly, leaving little capacity for

other operations.

Having servers randomly ping one another reduces the load on the coordinator, im-

proves failure detection time, and scales naturally as the cluster grows. Since the work of

pinging the servers is divided up, servers can afford to ping each other more frequently

than a single coordinator could in a large cluster. Server are pinged much more frequently
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than every 75 ms; with high probability each server is pinged every 100 to 500 µs. Con-

sequently, RAMCloud speeds the failure detection of idle servers without substantially

increasing coordinator load by distributing the work of monitoring for failures across the

cluster; this is another example of how RAMCloud uses randomized techniques to avoid

centralized bottlenecks that could limit scalability.

Short failure detection timeouts also present some potential pitfalls. For example,

overly hasty failure detection introduces a risk that RAMCloud will treat performance

glitches as failures, resulting in unnecessary recoveries. The load of these unnecessary

recoveries could destabilize the system further by causing additional recoveries. In the

worst case, the result would be a sort of “recovery storm” where recoveries would trigger

waves of cascading failures. Currently, it is unclear whether this will be a problem in prac-

tice, so it is left to future work. One potential way to mitigate this threat is to have the

coordinator give servers a second chance before recovering them. In this approach, the co-

ordinator would ping a server marked for recovery one final time just before recovering it.

If it responded to the ping, then it would be restored to normal status in the cluster without

undergoing recovery. This would give misbehaving servers more time to respond to pings

when the cluster is already performing another recovery, since the coordinator performs

recoveries one-at-a-time. This approach might be effective in fending off recovery storms,

since the grace period given to a misbehaving server would be proportional to the number

of concurrently failed servers in the cluster.

Another potential pitfall is that short timeouts may preclude the use of some network

protocols. For example, most TCP implementations wait 200 ms before retransmitting lost

packets. Since RAMCloud pings are configured to timeout more quickly, a single lost

packet could lead to a spurious failure detection. RAMCloud supports TCP, but it must use

a long failure detection interval, which lengthens unavailability on failures. Other trans-

ports, such as Infiniband, support lower timeouts and faster failure detection, and RAM-

Cloud provides an IP-capable transport similar to TCP that also supports lower timeouts.
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5.3 Setup

Once the coordinator has verified that a master has failed, it enters the setup phase of

master recovery. During this phase, the coordinator gives each server all of the information

it needs to perform its share of the work of recovery, so once this phase completes, recovery

proceeds independently of the coordinator. The coordinator finds the log segment replicas

left behind by the crashed master, verifies that the log is undamaged and safe to use for

recovery, divides up the work of recovery into equal size partitions, and distributes the

work of recovery across several of the servers in the cluster.

5.3.1 Finding Log Segment Replicas

As described in Section 4.4.1, a master does not keep a centralized list of the segments that

comprise its log. This prevents the coordinator from becoming a bottleneck during normal

operation. Each master tracks where its segments are replicated, but this information is lost

when it crashes.

The coordinator discovers the locations of the crashed master’s replicas by querying

all of the backups in the cluster using findReplicasForLog (§4.4). The coordinator

aggregates the locations of the consistent replicas into a single map.

This query broadcast is fast; the coordinator uses RAMCloud’s fast RPC system and

queries multiple backups in parallel. The current coordinator implementation can broadcast

to 80 machines in 600 µs. Scaling this approach to 10,000 nodes would result in broadcast

times of about 75 ms, so in large clusters it may make sense to structure broadcasts in a

tree-like pattern.

The coordinator broadcast is also used to give an early start to disk reading operations

on backups, so its overhead is mitigated. Backups start reading replicas from storage imme-

diately after they reply with a replica list. Even as the coordinator finishes setup, backups

are already reading the data from storage that the recovery masters will request during the

replay phase.
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5.3.2 Detecting Incomplete Logs

After all of the backups return their lists of replicas, the coordinator must determine whether

the reported segment replicas form the entire log of the crashed master. Redundancy makes

it highly likely that the entire log will be available, but the system must be able to detect

situations where data is missing (for example, during massive failures such as network par-

titions or power outages). As described in Section 4.4.2, backups return a log digest to

the coordinator during findReplicasForLog that is used to verify whether the set of

replicas found constitutes a complete and up-to-date view of the log from the failed server.

In the unlikely case that findReplicasForLog cannot find a complete log, the

coordinator aborts and retries the recovery. In the meantime, if crashed servers rejoin the

cluster, then a future recovery for the server may succeed. If replicas for some of the

segments are persistently unavailable, then the user can drop the affected tablets, which will

cause the coordinator to give up retrying the recovery. Another option would be to allow

the user to permit recovery with an incomplete log. The user would have no guarantees

on the completeness or consistency of the data after recovery, and RAMCloud currently

provides no interface for this.

For safety and consistency, each recovery master must restrict the replicas it replays

to those that are part of the coordinator’s aggregated replica location list. The coordinator

ensures that the replicas in its list are all consistent and represent the entire log of the

crashed master (§4.4). At the end of the setup phase, the coordinator provides this list to

each recovery master (§5.3.4), and recovery masters only replay replicas from the list. Even

if new servers with additional replicas are added to the cluster during recovery, recovery

masters must not use replicas stored on them, since some of them may be stale.

5.3.3 Grouping Tablets Into Partitions

Next, the coordinator must divide up the work of recovery among a set of recovery masters.

The coordinator does this by grouping the tablets of the crashed master into partitions.

Then, the coordinator assigns each partition to exactly one recovery master for recovery

(§5.3.4). Later during the replay phase of recovery, each recovery master replays the objects

from the crashed master’s log that are part of its partition and re-replicates them as part of
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its own log. When recovery completes, the recovery masters become the new home for the

tablets in their assigned partitions.

RAMCloud partitions log data entirely at recovery time rather than having masters

divide their data during normal operation. Waiting until recovery time ensures that the

work of splitting log data across into partitions is only done once and only when it actually

matters: at the time the server has crashed. Furthermore, delaying partitioning allows the

partition scheme to be based on the final distribution of the object data across the crashed

master’s tablets. Another benefit is that the coordinator could factor in the global state of

the cluster. For example, the coordinator could use server availability or load information

in determining partitions. The current implementation does not factor global cluster state

into partitioning.

The coordinator’s goal in determining the partitions is to balance the work of recovery

such that all recovery masters finish within the 1 to 2 second recovery time budget. Two

key factors determine the time a recovery master needs to perform its share of the recovery.

First, recovery masters will be limited by network bandwidth for large partitions. Second,

recovery masters will be limited by cache misses for hash table inserts for partitions with

many objects. As a result, the coordinator must take care to ensure that no single recovery

master is saddled with recovering a partition that is too large or that has too many ob-

jects. What constitutes “too much” or “too many” is determined experimentally (§6.3) by

benchmarking recovery masters. For our machines, each partition is typically limited to

500 MB to 600 MB and 2 to 3 million objects.

In order to create a balanced set of partitions, the coordinator must know something

about the tablets that were on the crashed master. One possibility would be for each master

to record tablet statistics on the coordinator when the balance of data in its tablets shifts.

However, RAMCloud’s high performance means tablet sizes can shift quickly. A master

may gain 600 MB of data in about 1 second and data can be deleted even more quickly (an

entire 64 GB server can be emptied in a fraction of a second). With a centralized approach

in a large cluster, tablet statistics on the coordinator might be updated more than 10,000

times per second.

Instead, masters rely on decentralized load statistics that they record as part of their log

along with the log digest in each segment. Whenever a master creates a new segment, it
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records the number of objects and the number of bytes in each of its tablets at the start of

the segment. However, a single master may contain millions of small tablets. To prevent

tablet statistics from using a substantial fraction of the log (and DRAM), statistics are only

approximate after the largest two thousand tablets on each master; the remaining tablets are

summarized as one record containing the total number of objects and bytes in the remaining

smaller tablets along with a count of how many smaller tablets there are. These statistics

are recovered from the log along with the log digest during the findReplicasForLog

operation at the start of recovery (§4.4). A log digest is always necessary for recovery, so

this approach is guaranteed to find a usable statistics block if recovery is possible.

Since statistics may be summarized if there are more than two thousand tablets on a

master, partitioning will not always divide data perfectly. In practice, the error from this

optimization is minimal. For example, if a 64 GB master with more than 2,000 tablets is

divided into 600 MB partitions, then on average each full partition will have 20 tablets or

more. The coordinator groups partitions using a randomized approach, so the likelihood

that any single partition is saddled with many of the largest tablets from those with averaged

statistics is low. Even masters with millions of tablets do not pose a problem; likelihood of

imbalance goes down as more and smaller tablets are grouped into partitions.

After acquiring the tablet statistics from the log, the coordinator performs its random-

ized bin packing algorithm to split work. The coordinator considers each tablet in turn. For

a tablet, the coordinator randomly chooses five candidate partitions from among set that

remain underfilled (that is, those that would take less than 1 to 2 seconds to recover given

their current contents). For each candidate partition, the coordinator computes how full the

partition would be if the tablet under consideration were added to it. If adding the tablet

would result in a partition that would take too long to recover (that is, it does not “fit”), then

it tries the next candidate. If the tablet fits, then it is added to the partition. If the partition

becomes full enough, then it is removed from consideration in future rounds. If the tablet

does not fit into any of the candidate partitions, then a new partition is created, the tablet

is added to it, and it is added to the set of potential candidate partitions. The algorithm

initially starts with an empty set of partitions, and terminates when all of the tablets have

been placed in a partition.

This randomized bin packing will not produce optimal results; with high probability it
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Crashed Master Tablets

t0 t1 t2 t3

Tablet Table ID Start Key Hash End Key Hash Estimated Size

t0 10 2
63

2
64 − 1 800 MB

t1 12 0 2
64 − 1 2000 MB

t2 21 0 2
63 − 1 200 MB

t3 31 0 2
64 − 1 100 MB

Tablets After Splitting

t0.0 t0.1 t1.0 t1.1 t1.2 t1.3 t2 t3

Tablet Table ID Start Key Hash End Key Hash Estimated Size

t0.0 10 2
63

3× 2
62 − 1 400 MB

t0.1 10 3× 2
62

2
64 − 1 400 MB

t1.0 12 0 2
62 − 1 500 MB

t1.1 12 2
62

2
63 − 1 500 MB

t1.2 12 2
63

3× 2
62 − 1 500 MB

t1.3 12 3× 2
62

2
64 − 1 500 MB

t2 21 0 2
63 − 1 200 MB

t3 31 0 2
64 − 1 100 MB

Partition Scheme for Recovery

t3t0.1 t1.1

t0.0 t2

t1.2t1.0

t1.3

Partition Tablets Estimated Size

p0 t0.1 400 MB

p1 t1.1, t3 600 MB

p2 t0.0 400 MB

p3 t2 200 MB

p4 t1.0 500 MB

p5 t1.2 500 MB

p6 t1.3 500 MB

Figure 5.2: The coordinator uses statistics from a crashed master’s log to partition tablets. The

top box shows the crashed master’s estimated tablet statistics from its log. The middle box shows

the tablets after tablets that are too large to be recovered by a single recovery master are split. The

bottom box shows the result of the random partition packing. Here, the coordinator limits partitions

to 600 MB of object data; in practice, the coordinator limits the number of objects in each partition

as well. This run resulted in seven partitions, four tablet splits, and 1200 MB of wasted capacity; an

ideal packing would have resulted in six partitions, four splits, and 500 MB of wasted capacity.
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will spread recovery across a few more partitions than strictly necessary. However, spread-

ing recovery across a few additional recovery masters has little impact on recovery time.

What is essential is that partition size is tightly bounded, which this algorithm ensures;

otherwise, some recovery masters would drag out recovery time.

Some tablets may be too large to be recovered quickly even when placed alone in an

empty partition. To solve this, the coordinator performs a splitting pass over all of the

tablets before grouping them into partitions. Each tablet is broken into the minimum num-

ber of equal-sized tablets that meet the size and object count constraints. In splitting tablets,

the coordinator approximates good places to split by using the statistics collected from the

log and by assuming all objects and object data are spread uniformly across the tablet by

its key hash function. Figure 5.2 illustrates an example of how the coordinator splits and

partitions tablets.

One potential pitfall of splitting tablets during recovery is that, without care, repeated

failures might lead to compounded splitting that would explode the number of tablets in the

cluster. Left unchecked, this could create a burden on clients, since it would increase the

number of tablet-to-master mappings they would need to access data. Fortunately, minimiz-

ing the number of splits per tablet and equalizing the size of the resulting tablets mitigates

this problem. One key property shows that cascading splits will not happen unless inter-

vening tablet growth requires it: whenever a tablet is split, each of the resulting tablets must

be at least half the size of the partition size (otherwise, it would have fit in a single partition

to begin with). This holds regardless of the number of times a tablet undergoes recovery:

a tablet will never be split across more than twice the optimal number of partitions needed

to contain it. This same argument holds for tablets that are split due to the amount of data

they contain and for tablets that are split due to the number of objects they contain.

5.3.4 Assigning Partitions to Recovery Masters

After determining the partitions that will be used for recovery, the coordinator assigns each

recovery master a partition with a recover RPC. As part of the RPC, each of recovery

master receives two things from the coordinator:

• a partition that contains the list of tablets it must recover, and
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Recovery MasterBackup

1. Read disk
2. Divide segment

data

3. Transfer data

to masters

4. Add objects to

hash table and log

6. Write segment

replicas to disk
5. Replicate log

data to backups

Hash table

In-Memory Log

Disk

...

Backup

Disk

...

Figure 5.3: During recovery, data in replicas flows from disk or flash on a backup over the network

to a recovery master, then back to new backups as part of the recovery master’s log.

• a replica location list that contains the locations of all the crashed master’s log seg-

ment replicas.

It is possible that the coordinator’s partitioning algorithm results in more partitions than

the number of available masters. In this case, just one partition is assigned to each of the

available masters. The remaining partitions are left marked as failed and are recovered in a

subsequent recovery (failed recovery masters are handled in the same way, as described in

Section 5.6.2).

5.4 Replay

The vast majority of recovery time is spent replaying segments on the recovery masters.

During replay, log entries are processed in six stages (see Figure 5.3).

1. A replica is read from disk into the memory of a backup.

2. The backup divides the object records in the replica into separate groups for each

partition based on the table id and the hash of the key in each log record.
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3. The records for each partition are transferred over the network to the recovery master

for that partition. The recovery master fetches records from backups as it becomes

ready for them to prevent backups from inundating it.

4. The recovery master incorporates the data into its in-memory log and hash table.

5. As the recovery master fills segments in memory, it replicates those segments over the

network to backups with the same scattering mechanism used in normal operation.

6. The backup writes the new segment replicas from recovery masters to disk or flash.

RAMCloud harnesses concurrency in two dimensions during recovery. The first di-

mension is data parallelism: different backups read different replicas from disk in parallel,

different recovery masters reconstruct different partitions in parallel, and so on. The sec-

ond dimension is pipelining: all of the six stages listed above proceed concurrently, with

segment replicas as the basic unit of work. While one replica is being read from disk

on a backup, another replica is being partitioned by that backup’s CPU, and records from

another replica are being transferred to a recovery master; similar pipelining occurs on re-

covery masters. For fastest recovery all of the resources of the cluster should be kept fully

utilized, including disks, CPUs, and the network.

5.4.1 Partitioning Log Entries on Backups

The objects in each segment replica must be bucketed according to partition during re-

covery, because each master intermingles all of the objects from all of its tablets in each

segment. Backups use the partitioning scheme created by the coordinator and help out re-

covery masters by grouping object data as it is loaded from replicas on disk. As a result,

each recovery master can quickly fetch just the objects it is responsible for replaying. Over-

all, deferring partitioning and spreading the work of partitioning across all of the backups

of the cluster saves network bandwidth and CPU load on masters during normal operation;

masters never have to perform any kind of rebalancing or bucketing. Furthermore, backups

vastly outnumber recovery masters in a RAMCloud deployment, so the load of partitioning

is spread across all of the nodes of the cluster. Partitioning is fully pipelined with the rest of
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recovery and proceeds in parallel with disk operation and data replay on each node, which

mitigates the penalty of waiting until recovery time to partition.

One drawback to partitioning log data at recovery time is that a crashed master’s objects

must be rewritten into recovery masters’ logs. If objects were not rewritten, then if one

master recovered part of another master and crashed, then the logs for both servers would

have to be replayed for recovery. This would slow recovery times and would make it

difficult to reclaim replica storage. Rewriting the objects essentially persists the data in its

partitioned form, which ensures that crashes are always recoverable using a single log. The

burden of rewriting data to storage is mitigated if backups have enough non-volatile buffer

capacity in aggregate to store the entire set of new replicas generated during a recovery (by

default, about three times the size of the crashed master’s DRAM).

As an alternative to partitioning at recovery time, masters could do it during normal

operation, as they log objects. Each master could group its tablets into partitions and place

objects from different partitions into different logs. When the master crashed, each recov-

ery master would only have to replay the replicas from the log for its assigned partition.

This also has the advantage that recovery masters would not have to rewrite log data dur-

ing recovery; instead, the could adopt the already-partitioned replicas left behind by the

crashed master as part of their log. Unfortunately, this approach has two disadvantages.

First, masters would actively replicate roughly one hundred segments at a time during nor-

mal operation (one for each partition). This would require 100 times more non-volatile

DRAM buffering on backups than having all objects appended to a one log. Second, parti-

tioning objects when they are first written to the master’s log makes it difficult to repartition

later. In RAMCloud, tablet sizes can change rapidly since each master supports hundreds

of thousands of operations per second. It would be costly for masters to frequently “repack”

objects in their log to accommodate repartitions due to changing tablet sizes.

5.4.2 Segment Replay Order

In order to maximize concurrency, recovery masters and backups operate independently.

As soon as the coordinator contacts a backup to obtain its list of replicas, the backup begins

prefetching replicas from disk. Almost immediately afterward, when the coordinator has
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determined the partitions it will use for recovery, masters begin fetching segment data from

backups and replaying it. Ideally, backups will constantly run ahead of masters, so that

data from a replica is ready and waiting whenever a recovery master requests it. However,

this only works if the recovery masters and backups process replicas in the same order. If

a recovery master requests the last replica in the backup’s order then the master will stall;

it will not receive any data to process until the backup has read all of its replicas.

To avoid pipeline stalls, each backup decides in advance the order in which it will read

its replicas. It returns this information to the coordinator during the setup phase, and the

coordinator includes the order information when it communicates with recovery masters to

initiate recovery. Each recovery master uses its knowledge of backup disk speeds (§4.3)

to estimate when each replica’s data is likely to be ready, and it requests data in order of

expected availability.

This approach causes all masters to request segments in the same order, which could

lead to contention if masters persistently work in a lock-step fashion. To solve this, servers

could randomize their requests for data to spread load. One simple approach would be

to use an approach similar to the randomness with refinement used in segment scattering.

When deciding which replica data to request, a recovery master would choose a few can-

didate servers randomly; among candidates a recovery master would send a request to the

candidate that is most likely to have unreplayed data ready. The use of refinement would

ensure that each recovery master replays data from each of the backups at an even rate,

while the use of randomness would avoid hot spots. In in our current cluster, convoying

does not appear to be a bottleneck, so this optimization remains unimplemented.

Unfortunately, even with replicas read in a fixed order, there will still be variations

between backups in the speed at which they read and process replicas. In order to avoid

stalls because of slow backups, each recovery master keeps several concurrent requests for

data outstanding at any given time during recovery. The current implementation keeps four

requests outstanding to backups; this is enough to hide network latency and compensate for

when a few backups are slow in responding without causing unnecessary queuing delays.

Recovery masters replay data in whatever order the requests return.

Because of the optimizations described above, recovery masters will end up replaying

replicas in a different order than the one in which the segments were originally written.
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Fortunately, the version numbers in log records allow the log to be replayed in any order

without affecting the result. During replay, each recovery master simply retains the ver-

sion of each object with the highest version number, discarding any older versions that it

encounters.

Although each segment has multiple replicas stored on different backups, only the pri-

mary replicas are read during recovery; reading more than one would waste valuable disk

bandwidth. Masters identify one replica of each segment as the primary replica when scat-

tering their segments as described in Section 4.3. During recovery, each backup reports all

of its replicas, but it identifies the primary replicas and only prefetches the primary replicas

from disk. Recovery masters request non-primary replicas only if there is a failure reading

the primary replica, and backups load and partition them only on demand. This typically

happens when the backup that contained a primary replica crashes, or if a primary replica is

corrupted on storage. Each non-primary replica is cached in DRAM after it is first accessed,

since all of the recovery masters will most likely need it.

Since I/O for non-primary replicas is done on demand, in the worst case, recovery time

could be extended 30 to 80 ms for every non-primary replica accessed. In practice, this

is unlikely for two reasons. First, depending on when a non-primary replica is accessed

during recovery it may not impact recovery time at all, since recovery can work ahead on

other segments and come back to replay data from the non-primary replica later. Second,

if the primary replicas for more than one segment have been lost, then several non-primary

replicas may be requested (and, thus, loaded) in parallel from different backups.

Recovery masters use the list of replica locations provided by the coordinator to de-

termine when they have replayed the entire log of the crashed master. The coordinator

verifies that the replica location list contains at least one replica from every segment in the

crashed master’s log. A recovery master finishes replay when at least one replica for every

segment mentioned in the replica location list has been replayed. Section 5.6.2 describes

what happens when this is impossible due to failures or data corruption.
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5.5 Cleanup

After a recovery master completes the recovery of its assigned partition, it notifies the coor-

dinator that it is ready to service requests. The coordinator updates its tablet configuration

information to indicate that the master now owns the tablets in the recovered partition, at

which point the partition is available for client requests. Clients with failed RPCs to the

crashed master have been waiting for new configuration information to appear on the co-

ordinator; they discover it and retry their RPCs with the new master. Each recovery master

can begin service independently without waiting for other recovery masters to finish.

Once all recovery masters have completed recovery, the coordinator removes the crashed

master from its server list and broadcasts its removal to the remaining servers of the clus-

ter. Backups listen for these events and remove any recovery state (in-memory partitioned

replica data, etc.) as well as the on-disk replicas for the recovered server as part of the log

replica garbage collection mechanism described in Section 4.6.

5.6 Coordinating Recoveries

5.6.1 Multiple Failures

Given the large number of servers in a RAMCloud cluster, there will be times when multi-

ple servers fail simultaneously. When this happens, RAMCloud recovers from each failure

independently. The only difference in recovery is that some of the primary replicas for each

failed server may have been stored on the other failed servers. In this case, the recovery

masters will need to use secondary replicas for some segments, but recovery will complete

as long as there is at least one replica available for each segment.

RAMCloud can recover multiple failures concurrently; for example, if a RAMCloud

cluster contains 5,000 servers with flash drives for backup, the measurements in Chapter 6

indicate that a rack failure that disabled 40 masters, each with 64 GB of DRAM, could be

recovered in about 2 seconds. Multiple simultaneous recoveries are supported but must be

explicitly enabled; by default, the coordinator only performs one recovery at a time.

If many servers fail simultaneously, such as in a power failure that disables many racks,
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RAMCloud may not be able to recover immediately. This problem arises if no replicas

are available for a segment or if the remaining masters do not have enough spare capacity

to take over for all the failed masters. In this case, RAMCloud must wait until enough

machines have rebooted to provide the necessary data and capacity. This happens natu-

rally, since the coordinator repeatedly retries a recovery until it succeeds; if some replicas

are unavailable the coordinator will hold back recovery until they can be found. RAM-

Cloud clusters should be configured with enough redundancy and spare capacity to make

situations like this rare.

5.6.2 Failures During Recovery

Nearly all failures and exceptional conditions that occur during recovery are solved by

aborting all or part of a recovery and retrying a new recovery for the tablets later. Each

recovery master works independently and may succeed or fail at recovering its assigned

partition without affecting the other recovery masters. A recovery master can give up on

recovery if it is impossible to complete, and the coordinator treats any crash of a recovery

master as an implicit recovery abort for that recovery master. As a result, some or all of the

tablets of the crashed master may still be unavailable at the end of a master recovery.

To remedy this, the coordinator repeatedly attempts to recover tablets from failed servers

until all tablets are available. Whenever a problem that prevented recovery from succeed-

ing is corrected, a follow-up recovery attempts restore availability shortly thereafter. Fur-

thermore, a partition is likely to be assigned to a different recovery master in a follow-up

recovery, which resolves problems that may be specific to a single recovery master.

The coordinator currently only performs one master recovery at a time, so recoveries do

not always start right away when a server fails. Instead, the coordinator enqueues the new

recovery and delays its start until the ongoing recovery completes. The queue of recoveries

is serviced in first-in-first-out (FIFO) order, so a repeatedly failing recovery for one master

cannot block recovery for another master.

Whenever a recovery master wishes to abort an ongoing recovery, it must undo some of

the effects of the recovery to ensure safety after future recoveries. Specifically, aborting the

recovery of a partition requires a recovery master to scan its hash table and remove entries
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for keys that were part of the partition that it failed to recover. This prevents leftover stale

entries in the hash table from causing consistency issues if the recovery master is later

assigned ownership of some of the keys from the partition it partially recovered. Removing

the hash table entries makes the log data left behind by the aborted recovery eligible for log

cleaning, so these entries eventually get cleaned up in the usual way.

Some of the many failure scenarios that can arise during recovery are discussed below;

many rely on the atomic and abortable nature of recovery on each individual recovery

master.

• A server crashes during recovery. When a server crashes it creates two sets of

problems since each server acts as both a master and a backup.

– Handling the loss of a backup. Since each segment is replicated, recovery

can succeed even with the loss of some backups. In the case that a backup

that contained the last remaining replica of a segment crashes during recovery,

any recovery master that had not yet replayed the objects from that segment

must abort the recovery of its partition. This does not preclude other recovery

masters from recovering their partitions successfully, depending on the timing

of the loss of the final replica.

– Handling the loss of a master. In this case, a recovery is enqueued for the

newly crashed master, which will be performed after the ongoing recovery. If

the master that crashed during an ongoing recovery was acting as a recovery

master, then it will also fail to recover its assigned partition. In this case, the

coordinator enqueues a new recovery for the master whose partition was not

successfully recovered. When this new recovery is started, the coordinator only

attempts to recover tablets that were not already successfully recovered in the

prior recovery. In total, when a recovery master fails two new recoveries are

enqueued (in addition to the ongoing recovery): one for the tablets owned by

the failed recovery master and one to retry recovery for the tablets of the master

that was only partially recovered.
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• A recovery master runs out of memory. If a recovery master runs out of log space

recovering a partition, it aborts the recovery and reports the failure to the coordina-

tor. Just as when a recovery master crashes, the coordinator schedules a follow-up

recovery to retry the recovery of the partition elsewhere in the cluster.

• A segment replica is corrupted or misidentified. Each segment replica’s metadata

and identifying information is protected by a checksum stored along with it on disk.

This checksum covers the master and segment ids, the replica length, and a bit in-

dicating whether its log digest is open or closed. It also covers the length and type

of all of the log records in the replica, but it does not include the contents of the log

entries themselves (they have individual checksums). Verifying a replica’s checksum

ensures it can be identified and iterated over safely, but objects must be individually

verified against their checksums to ensure they have not been corrupted. Backups

discard all data from replicas whose checksums do not match their metadata. Recov-

ery masters automatically request data for discarded replicas from other backups as

needed.

Backups never verify object checksums; instead an object’s checksum is only veri-

fied just before it is replayed. This prevents an object from passing a check on the

backup, only to be corrupted in transit to the recovery master. When an object with

a corrupted checksum is encountered, the recovery master aborts the replay of the

remainder of the replica, and it tries to fetch another replica of the same segment on

another backup. The version numbers on log records (§5.4.2) ensure replaying the

same replica multiple times is safe.

• A recovery is split across more partitions than there are masters available. Such

a situation implies the existing cluster is too small to meet the 1 to 2 second recovery

goal. In this case, every master in the cluster is assigned a single partition to re-

cover, and the remaining unassigned partitions are left marked as needing recovery.

A follow-up recovery is enqueued and is started immediately following the com-

pletion of the first recovery. By iteratively retrying recovery, each of the available

masters in the cluster will recover some fraction of the failed server’s tablets every 1

to 2 seconds until all of its tablets have been returned to service.
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• No backups have storage space left. When backups run out of space either dur-

ing recovery or during normal operation, they begin to reject segment replication

requests from masters. As a result, operations stall until new backups join the cluster

with additional storage capacity or until the user frees space by deleting objects or

dropping tablets.

In the current implementation, it may be dangerous to allow backups to fill to capac-

ity, since deleting objects requires new log records to be written. If recovery were

to fill backups completely, it may become impossible to release storage space and

resume operation. One fix to this is to have recovery masters abort recovery if they

take too long and receive too many backup replication rejections. In-memory log

space used by the recovery objects would become reclaimable, and the log cleaner

on the recovery masters would free space on the backups. In practice, it will be im-

portant for operators to ensure that RAMCloud has adequate disk space to perform

recoveries. An operator user interface that can aid with these types of administrative

tasks is left for future work.

• The coordinator crashes during recovery. The coordinator persists its critical state

to a consensus-based high-availability storage system [25], and RAMCloud uses co-

ordinator standbys to take over if the active coordinator crashes. When a coordina-

tor crashes, a leader election chooses a new coordinator process, which reloads the

critical cluster state and resumes operation. However, coordinators do not persist in-

formation about ongoing recoveries. Instead, they mark a server (and its tablets) as

failed in their persistent server list. Newly elected coordinators always restart master

recoveries based on server and tablet status information left behind by the previous

coordinator. When a new coordinator is elected it scans its server list to find any

crashed and unrecovered servers, and it enqueues a recovery for each of them. As

usual, it performs the recoveries one-at-a-time.

With this approach, it is possible that the cluster may still be running a master recov-

ery started by a failed coordinator process when a new coordinator takes over and

starts a competing recovery for the same master. The new coordinator must ensure

only one of these recoveries succeeds, since it is imperative for consistency that each
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tablet is only served by one master at a time. Coordinators solve this by tagging each

master recovery with a randomly generated id. When recovery masters complete

their portion of recovery, they report to the current coordinator using id of the recov-

ery they are participating in. If the coordinator has failed in the meantime, it will

have no record of a master recovery with the reported id, so it notifies the recovery

master that it should abort the recovery instead of servicing requests for the data. In

this way, ongoing recoveries are neutralized after a coordinator rollover.

A second, less serious problem arises since a newly elected coordinator may try

to assign a partition to recovery master that is already participating in an existing

(doomed) recovery. If a recovery is already ongoing on a recovery master, the re-

covery master should abort its ongoing recovery and start work on the new recovery.

Currently, this is unimplemented, since recovery masters block while performing a

recovery; recovery may block for a few seconds after a coordinator rollover until

preoccupied recovery masters complete their ongoing recovery (necessarily, ending

in abort).

5.6.3 Cold Start

On rare occasion, an entire cluster may fail or need to be restarted, such as during a power

outage. In these cases, RAMCloud must guarantee the durability of the data that was

written to it, and it must gracefully resume service whenever servers begin restarting.

When the coordinator comes back online, it proceeds with normal coordinator recovery,

and it begins continuously retrying recovery for each of the logs left behind by the former

masters. When servers restart, they retain all replicas they find on disk until the objects in

them are recovered and it can safely determine they are no longer needed (§4.6). When the

first few servers come back online, recovery will be impossible, since some of the segments

will be missing for every log that needs recovery. Once enough servers have rejoined the

cluster, the coordinator’s recovery attempts will begin to succeed and tablets will begin to

come back online.

RAMCloud uses its normal master recovery during cluster restart, but it may eventually

make more sense to use a different approach where masters are reconstructed exactly as
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they existed before the cold start. When restarting all servers, the coordinator could recover

each crashed master as a single unit, rather than partitioning its tablets. Thus, data in a

crashed master’s replicas would not need to be partitioned, and ownership of its replicas

could be given directly to the recovery master. In effect, the recovery master could load

the log replicas into DRAM and then resume operations on the log, as if it had created

them. Consequently, recovery masters would avoid the need to recreate replicas of the

crashed masters’ data. Such an optimization would reduce disk traffic and cold start time

by a factor of four. In the end, we choose to use the existing recovery mechanism, which

fits with the goal of minimizing and collapsing error cases during recovery. For example,

transferring log ownership becomes complicated when servers experience repeated failures

during cold start (see §5.4.1). To make the approach viable, RAMCloud would need to be

extended to support logs comprised of replicas written with multiple log ids, its server ids

would have be adjusted to support reuse, or the coordinator and backups would need to

support a cross-backup, multi-replica, atomic server id change operation.

5.7 Zombie Servers

RAMCloud seeks to provide a strong form of consistency (linearizability [22]), but server

failures and network partitions make this a challenge. One key invariant RAMCloud uses

to ensure strong consistency is that requests for a particular object in are always handled by

at most one master at a time. If one master performs all operations for a particular object at

a time, then it can provide atomicity and strong consistency by ordering all operations on

each object. Unfortunately, due to network partitions, the coordinator may not be able to

reach a master even while it continues to service client requests. A master that is suspected

of failure may continue to operate as a “zombie”, and it must stop servicing requests before

it can be safely recovered. Otherwise, if the contents of a master were recovered else-

where while it continued to service requests, then clients could read and write differing and

inconsistent views of the same keys.

RAMCloud uses two techniques to disable operations by these zombie masters: one

for write operations and another for read operations. To prevent a zombie master from

servicing a client write request, the coordinator broadcasts to the cluster indicating that the
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master is entering recovery. Backups refuse all replication operations from masters that are

under recovery, so any requests from the master are rejected by backups afterward. When-

ever a master’s replication request is rejected in this way, it stops servicing requests, and

it attempts to contact the coordinator to verify its status. The master continuously tries to

contact the coordinator until it is successful, and its other operations remain suspended.

When the master successfully contacts the coordinator, if recovery for the master has al-

ready started, then the master commits suicide: it terminates immediately. Otherwise, it

resumes normal operation. This approach ensures that by the time recovery masters begin

replaying log data from a crashed master, the master can no longer complete new write

operations.

Under correlated failures and network partitions, the coordinator may not be able to

contact all of the backups of the cluster to prevent a zombie master from replicating new

log data. A zombie master may continue to replicate data to its head segment if the backups

holding the segment’s replicas could not be contacted by the coordinator. Fortunately, if

this case arises, then recovery would not proceed on the coordinator; the coordinator would

be missing all the replicas for the head segment, so recovery would be reattempted later.

RAMCloud uses its distributed failure detection mechanism to help ensure that a zom-

bie master stops servicing client read requests before a recovery for its tablets completes.

Recall that each server occasionally pings another randomly-chosen server in the cluster

for failure detection. A master uses the information it gains from these pings to quickly

neutralize itself if it becomes disconnected from the cluster. As part of each ping request,

the server sending the ping includes its server id. If the sending server is not marked as up

in the server list on the receiving server, then a warning is returned. Just as with rejected

backup replication requests, a server begins deferring all client operations and checks in

with the coordinator when it receives a warning. If recovery has already started for the

master, then it terminates immediately. Otherwise, it resumes normal operation. Similarly,

if a server is separated from the cluster and cannot contact any other servers, then the server

suspects itself to be a zombie and takes the same steps by checking in with the coordinator.

This approach to preventing stale reads is only probabilistic; groups of servers that are

disconnected may continue to ping one another, even after the coordinator has detected their

failure and started recovery. RAMCloud’s goal in this respect is to make the probability
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of stale reads no more likely than the probability of silently losing data (which would also

constitute a violation of linearizability). The probability of a client experiencing stale reads

is highly unlikely in practice, since several rounds of pings will have occurred by the time

recovery completes for one of the disconnected servers. If a substantial fraction of the

cluster is disconnected, then the coordinator cannot perform recovery anyway (all of the

replicas for some segment are likely to be in the disconnected set of servers). If a small

fraction of the cluster is disconnected, then each disconnected server is likely to check in

with the coordinator quickly, since most of ping attempts to it and from it will fail.

Neutralizing zombie masters strengthens consistency but is insufficient alone to provide

linearizability; two other guarantees are needed, one of which remains unimplemented.

First, when recovering from suspected coordinator failures, RAMCloud must ensure that

only one coordinator can manipulate and serve the cluster’s configuration at a time. Without

this guarantee, independent coordinators could assign the same tablets to different masters,

again creating different and inconsistent views of some of the keys. This problem is pre-

vented by using the consensus-based ZooKeeper [25] for coordinator election. Second,

linearizability requires exactly-once semantics, which requires support from the RPC sys-

tem that remains unimplemented in RAMCloud.

5.8 Summary

When a master crashes in RAMCloud, the data stored in its DRAM becomes unavailable.

RAMCloud uses fast crash recovery to restore availability by reconstituting the data from

the failed server’s DRAM in 1 to 2 seconds. The key to fast recovery is to leverage scale

by dividing the work of recovery across all of the nodes of the cluster. Recovery employs

all of the CPUs, NICs, and disks of the cluster to recover quickly.

Fast crash recovery depends on fast failure detection; RAMCloud nodes use random-

ized and decentralized probing to speed the detection of crashed nodes.

At the start of recovery, the coordinator broadcasts to find replicas of log data for the

crashed master. It verifies that the set of replicas it discovers constitutes a complete copy

of the log by checking it against a log digest that is extracted from the head segment of

the crashed master’s log. The coordinator uses statistics extracted from replicas and a
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randomized bin packing algorithm to divide the crashed master’s tablets into roughly equal

sized partitions. Each partition is assigned to a separate recovery master.

During the replay phase, which is the main portion of recovery, backups load replica

data and bucket objects according to partition. At the same time, each recovery master

fetches objects from backups relevant to the tablets it is assigned to recover. It copies these

into its in-memory log, updates its hash table, and re-replicates the log data to backups.

After a recovery master has replayed objects from all of the segments left behind by the

crashed master, it begins servicing requests for its assigned tablets. The replay phase is

highly parallel and pipelined; each node is reading data from disk, partitioning objects

found in replicas, fetching data from backups, updating its hash table, and re-replicating

objects to other nodes in the cluster all at the same time.

Most failures that can happen during recovery are handled by cleanly aborting recovery

and retrying it again later. Recovery safely deals with the loss of masters or backups,

the loss or corruption of replica data, resource exhaustion, and coordinator crashes. The

coordinator must be sure a master has stopped servicing requests before the master can be

safely recovered. The coordinator disables a zombie master’s writes by notifying backups

that the master is dead, and it reuses the decentralized failure detector to quickly stop

zombie masters from servicing read requests. Cold start is handled by iteratively applying

the single master recovery mechanism.

Overall, fast crash recovery quickly restores availability and full performance to the

cluster after a server crash, rather than relying on expensive in-memory redundancy or op-

erating in a degraded state using data on disk. Its short recovery time is no longer than other

delays that are common in normal operation, so recovery is unnoticeable to applications.

Fast crash recovery is the key to providing continuous availability in RAMCloud.



Chapter 6

Evaluation

We implemented and evaluated the RAMCloud architecture described in Chapters 3 through 5.

Ideally, evaluation would answer the question, “can a realistic RAMCloud deployment reli-

ably restore access to the lost DRAM contents of a full-size failed server in 1 to 2 seconds?”

Unfortunately, this question cannot be answered directly without hundreds of nodes, so

instead we focus on evaluating the scalability of crash recovery. If RAMCloud can recover

quickly from increasingly large failures as cluster size grows, then it should be possible to

recover the entire contents of a failed server in a sufficiently large cluster. Any design will

have limits to its scalability, so it is reasonable to expect that as the cluster grows recovery

bandwidth will see diminishing gains. Then, the key questions are, “how much data can

be recovered in 1 to 2 seconds as cluster size scales,” and “what are the limits of recovery

scalability?”

Each section of this chapter addresses a different question related to the performance

of recovery, mostly aimed at understanding its scalability. Some of the key questions and

related results are summarized here.

How well does recovery scale? (§6.4)

A crashed server with 40 GB of data can be recovered in 1.86 seconds, which is only

only 12% longer than it takes to recover 3 GB with 6 servers. As a result, we expect that

the entire contents of a 64 GB crashed master could be recovered in about 2 seconds

with a cluster of 120 machines similar to those used in our experiments.

77
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What is the overhead of adding nodes to the cluster? (§6.4)

The coordination overhead of adding a node to recovery is only about 600 µs, so the

current implementation should scale to spread recovery across hundreds of nodes.

What limits recovery times in small clusters? (§6.4.1)

In our 80-node cluster, recovery times are limited by our CPUs, since each backup must

perform many times more work than in an expected RAMCloud deployment. During

recovery, CPU utilization and memory bandwidth remain saturated at nearly all times.

Our CPUs only provide 4 cores with a single memory controller; newer CPUs have

more cores and more memory controllers should improve recovery times.

How large should segments be? (§6.2)

Backups utilize as least 85% of the maximum bandwidth of their storage devices by

using 8 MB segments with both flash and traditional hard disks.

How large should partitions be? (§6.3)

Each recovery master can recover 75 to 800 MB/s, depending on the average size of

objects in the crashed master’s log. To target 1 to 2 second recovery times for expected

workloads, the size of each partition must be limited to around 500 to 600 MB and

2 to 3 million objects.

How well does segment scattering compensate for variances in disk performance? (§6.6)

When subjected to vibration, disk performance in our cluster varies by more than a

factor of four. RAMCloud’s randomized segment scattering effectively compensates

for this by biasing placement based on storage performance. As a result, recovery

times only increase by 50% when more than half of the disks are severely impaired.

What is the impact of fast recovery on data loss? (§6.7)

Shorter recovery times are nearly as effective at preventing data loss than increased re-

dundancy; our analysis shows that decreasing recovery times by a factor of 100 (which

RAMCloud does compared to typical recovery times), improves reliability by about a

factor of 10,000.
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This chapter also makes projections about the limits of fast recovery based on the ex-

perimental observations, and it explores how future hardware trends will affect recovery

capacity and times. Some of these projections are summarized below.

How large of a server could be recovered in 1 to 2 seconds with a large cluster? (§6.5.1)

It may be possible to recover 200 GB of data from a failed server in 2 seconds using

about 560 machines. Spreading recovery across more servers would result in longer

recovery times, since the cost of coordinating hundreds of servers would degrade re-

covery time.

How will recovery need to adapt to changing hardware over time? (§6.5.1)

In order to keep up with DRAM capacity growth, in the future RAMCloud will need

to recover more data per server and scale across more recovery masters. Improving

recovery master performance will require multicore and non-uniform memory access

optimizations for recovery master replay. To improve scalability, coordinator broad-

casts will need to be faster to allow more recovery masters to participate efficiently in

recovery. Since network latency is unlikely to improve significantly in the future, the

coordinator will have to employ more efficient broadcast patterns.

What would be needed to make RAMCloud cost-effective for small clusters? (§6.5.2)

A cluster of 6 machines can only recover 3 GB of data in 1 to 2 seconds, and smaller

clusters recover even less. This makes RAMCloud expensive in small clusters, since

only a small fraction of each server’s DRAM can be used without threatening availabil-

ity. For small clusters, it will be more cost-effective to keep redundant copies of objects

in DRAM.

What is the fastest possible recovery for a 64 GB server with a large cluster? (§6.5.3)

It may be possible to recover a 64 GB server in about 330 ms using 2,000 machines.

With more machines, coordination overhead begins to degrade recovery times.

6.1 Experimental Configuration

To evaluate crash recovery we use an 80-node cluster consisting of standard off-the-shelf

components (see Table 6.1) with the exception of its networking equipment, which is based



CHAPTER 6. EVALUATION 80

CPU Intel Xeon X3470 (4×2.93 GHz cores, 3.6 GHz Turbo)

RAM 24 GB DDR3 at 800 MHz

SSDs 2× 128 GB Crucial M4 (CT128M4SSD2)

NIC Mellanox ConnectX-2 Infiniband HCA

Switches

4× 36-port Mellanox SX6036 (4X FDR)

1× 36-port Mellanox IS5030 (4X QDR)

1× 36-port Mellanox IS5025 (4X QDR)

Table 6.1: Experimental cluster configuration. All 80 nodes have identical hardware. Each node’s

network adapter provides 32 Gbps of network bandwidth in each direction, but nodes are limited to

about 25 Gbps by PCI Express. The switching fabric is arranged in a two layer fat-tree topology [32]

that provides full bisection bandwidth to the cluster. Two SX6036 switches form the core of the

fabric with the remaining switches acting as leaf switches.

on Infiniband; with it our end hosts achieve both high bandwidth (25 Gbps) and low latency

(5 µs round-trip RPCs).

The default experimental configuration (Figure 6.1) uses each node as both a master

and a backup. In most experiments each master recovers a partition of a failed master. One

additional machine runs the coordinator, a client application, and an extra master filled

with data that is crashed to induce recovery. The CPUs, disks, and network are idle and

entirely dedicated to recovery. In practice, recovery would have to compete for resources

with application workloads, though we would argue for giving priority to recovery. The

backup on each node manages two solid-state flash drives (SSDs). All experiments use a

disk replication factor of three: three replicas on disk in addition to one copy in DRAM.

At the start of each experiment, the client fills a master with objects of a single size

(1,024 bytes by default). It then sends an RPC to the master that causes it to crash. The

cluster detects the failure and reports it to the coordinator, which verifies the failure and

starts recovery. The client waits until all partitions have been successfully recovered, then

reads a value from one of those partitions and reports the end-to-end recovery time.

All reported recovery times factor out failure detection time and only include the client-

observed unavailability due to recovery time. Failure detection time has not been opti-

mized, and the current implementation would add variability to recovery time measure-

ments. The median failure detection time over 100 recoveries spread across 80 recovery

masters is 380 ms, with times ranging from 310 ms up to 930 ms.
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Backups and Recovery Masters
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Figure 6.1: In most experiments, each node runs as a recovery master and a backup. Each recovery

master is idle and empty at the start of recovery, and each backup manages two solid-state flash

drives (SSDs). Some noted experiments replace the SSDs with traditional disks. Each recovery

master recovers a partition of a failed master. One additional machine runs the coordinator, a client

application, and an extra master filled with data that is crashed to induce recovery (indicated with

an ‘X’ in the figure).

6.2 How Large Should Segments Be?

To achieve efficient storage performance, RAMCloud servers must be configured with an

appropriate segment size. Each access to disk has a high fixed cost due to seek and ro-

tational latency, so minimizing the number of disk accesses increases effective disk band-

width. Flash SSDs help, but disk controller latency still mandates large accesses to achieve

maximum disk bandwidth. Consequently, backups buffer objects into full segments and

write each segment replica out to disk with a single contiguous operation. This also makes

reading replicas from disk efficient, since backups read each replica from disk in a single

access from a contiguous region of storage.

However, segments cannot be arbitrarily large. Backups must be able to buffer entire

segments in non-volatile DRAM, so using large segments could substantially increase the

cost of the system if larger battery backups were needed. Furthermore, gains to storage

bandwidth diminish as segment size increases, so segments only need to be so large. Fi-

nally, large segments hinder load balancing, since they limit choice in replica placement.

A good segment size is one that provides high disk bandwidth utilization and limits the

buffering required on backups.
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Configuration 1 2× Flash Disks
128 GB Crucial M4 SSDs (CT128M4SSD2)

Access Latency: 93 µs read, 222 µs write

Configuration 2

Disk 1
Western Digital WD 2503ABYX (7200 RPM, 250 GB)

Access Latency: 9-12 ms read, 4-5 ms write

Disk 2
Seagate ST3500418AS (7200 RPM, 500 GB)

Access Latency: 10-14 ms read, 6-8 ms write

Table 6.2: Storage devices used in experiments. Most experiments use the first configuration, which

consists of two identical flash SSDs in each node. The high bandwidth of the SSDs allows high write

throughput during normal operation and speeds recovery after failures. The second configuration,

used in a few experiments, uses two disks in each node. The first disk is an enterprise class disk and

the second is a desktop class disk. The disk-based configuration gives up some write throughput

and recovery bandwidth for more cost-effective durable storage. Access latency is determined by

averaging the duration of 1,000 random 1 KB accesses. Access latency is given as a range for

traditional disks, since it depends on which portion of the disk is accessed. The shorter time is when

accesses are limited to the first 25% of the disk; the longer time is when accesses span the entire

disk. The bandwidth of each of these devices is characterized in Figure 6.2.

Also, RAMCloud must use a segment size that works well for a variety of storage

devices. Some applications may wish to use traditional disks for low-cost durability. Other

applications may use solid-state flash drives to provide higher write throughput and faster

recovery. Table 6.2 shows two storage configurations used in our experiments. In the first

(and default) configuration, each node uses two flash SSDs. In the second configuration,

each node uses two traditional hard disk drives, each of the two is a different model. The

first model is an enterprise-class disk and the second model is a desktop-class disk. These

configurations have significantly different bandwidth and latency characteristics.

A segment size of 8 MB provides high effective disk bandwidth for both experimental

configurations. Figure 6.2 shows the effective disk bandwidth of each of these devices

as block access size varies. For both traditional disk devices, reading replicas in 8 MB

blocks achieves about 85% of each device’s maximum bandwidth. For each flash SSD,

8 MB segments achieve 98% of the device’s maximum bandwidth. All of the remaining

experiments in this chapter use 8 MB segments.

Using an 8 MB segment size also sufficiently limits the buffering needed on backups.

During normal operation, each master keeps three replicas of its head segment buffered on
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Figure 6.2: Average transfer rate of three different storage devices when randomly reading and

writing data in various block sizes. With 8 MB block accesses, flash SSDs operate at about 98%

of their maximum transfer rate. Each of the disk models operates at about 85% of its maximum

transfer rate. For traditional disk devices, transfer rate is non-uniform across the surface of the disk.

Individual lines on each graph show the average transfer rate depending on how much of the device

is randomly accessed (starting from the beginning of the disk, where transfer rates are highest). The

“50%” line shows that if random block accesses are limited to the first half of the drive, then average

transfer rate is improved by about 15 to 20% for the traditional disk-based storage devices. Limiting

accesses to the first quarter of each drive provides a further small improvement.
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backups. Correspondingly, 8 MB segments will require about 24 MB to 48 MB of non-

volatile buffering on each backup. Thus, backup replica buffers typically require a tiny

fraction of the total DRAM capacity of each node and can be flushed to storage on power

failure in a few hundred milliseconds.

6.3 How Large Should Partitions Be?

Before the coordinator can perform partitioning during recovery, it must know how much

data a recovery master can process in 1 to 2 seconds. Figure 6.3 measures how quickly

a single recovery master can process backup data, assuming enough backups to keep the

recovery master fully occupied. The top graph of the figure shows that, depending on the

object size, a recovery master can replay log data at a rate of 75-800 MB/s. This includes

the overhead for reading the data from backups and writing new backup copies. With

small objects the speed of recovery is limited by the per-object costs of updating the hash

table. With large objects the speed of recovery is limited by memory bandwidth while re-

replicating segments. For example, with 800 MB partitions and a disk replication factor of

3, each recovery master would need to write 2.4 GB of data to backups, and each replica

written to a backup crosses the memory controller multiple times.

For one-second recovery Figure 6.3 suggests that partitions should be limited to no

more than 800 MB and no more than 2 million log records (with 128-byte objects a re-

covery master can process 300 MB of data per second, which is roughly 2 million log

records). We limit partition size to 500 MB for the remaining experiments in order to target

a 1 to 2 second recovery time. If 10 Gbps Ethernet is used instead of Infiniband, parti-

tions would need to be limited to 300 MB due to the network bandwidth requirements for

re-replicating the data.

In our measurements we filled the log with live objects, but the presence of deleted

versions will, if anything, make recovery faster. Replicas may be replayed in any order

during recovery, and if a newer version of an object is replayed before an older version,

then the older version is discarded without adding it to the recovery master’s log. So,

deleted versions may not need to be re-replicated, depending on the order that segments are

replayed.
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Figure 6.3: Recovery time as a function of partition size with a single recovery master and 80

backups. Using large set of backups with a single recovery master, means that the recovery master

is the bottleneck in recovery. The top graph shows recovery time as a function of the amount

of data recovered; the bottom graph shows recovery time as a function of the number of objects

recovered. Each line uses objects of a single uniform size. Recovery time grows proportionally as

partition size increases, but the rate of increase depends on the number of the objects in the partition.

Among equal-sized partitions, those containing many small objects take longer to recover than those

containing fewer larger objects. Depending on the size of objects in a crashed master’s log, a single

recovery master can recover between 75 and 800 MB per second. We limit partition size to 500 MB

for the remaining experiments in order to target a 1 to 2 second recovery time.
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Figure 6.4: Recovery time as the size of the crashed master is scaled proportionally to the number

of nodes in the cluster. A master is filled with 500 MB for each node in the cluster then crashed

and recovered. Each node also acts as a backup with replicas from the crashed master stored on two

flash disks, providing about 460 MB/s of storage read bandwidth per node. The minimum, average,

and maximum amount of time backups spend reading data from disk are also shown. Each point is

an average of 5 runs (Figure 6.6 shows the variance of master recoveries). A horizontal line would

indicate perfect scalability.

6.4 How Well Does Recovery Scale?

The most important issue in recovery for RAMCloud is scalability; specifically, does recov-

ery bandwidth grow as cluster size grows? Ultimately, recovery bandwidth determines how

much data can be stored on each master and how quickly a master can be recovered when

it fails. If one recovery master can recover 500 MB of data in one second, can 10 recovery

masters recover 5 GB in the same time, and can 100 recovery masters recover 50 GB?

Figure 6.4 seeks to answer this question. It plots recovery time as the amount of lost

data is increased and the cluster size is increased to match. For each additional 500 MB
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Figure 6.5: Same experiment as Figure 6.4, except each recovery master only recovers 300 MB of

data. Recovery times for 300 MB partitions are significant, since they are a rough estimate of the

maximum partition size that could be used with 10 Gbps Ethernet for fast recovery. With smaller

partitions, the 80 recovery masters only recover 24 GB of data, but recovery finishes in 1.0 seconds.

Recovery times improve slightly better than in proportion to the reduction in partition size compared

to the times in Figure 6.4. Though the amount of recovered data is less overall, the effective recovery

bandwidth improves to 24 GB/s compared the 21 GB/s achieved using 500 MB partitions.

partition of lost data, the cluster includes one additional node that acts as both a recovery

master and a backup. The additional node should be able to replay the additional 500 MB

of data in less than a second, and it should be able to help read an additional 460 MB/s of

data from disk. Consequently, recovery times should remain constant as the amount of data

recovered scales with cluster size.

Figure 6.4 shows that larger clusters scale to recover larger failures while retaining

acceptable recovery times. With 80 recovery masters and 160 flash SSDs, RAMCloud

recovers 40 GB of data in 1.86 seconds, which is only 12% longer than it takes to recover
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3 GB with 6 recovery masters using 12 SSDs. Recovery times are consistently within

the 2 second time budget. Extrapolating, it appears that recovery will scale to recover

64 GB in 1 to 2 seconds with clusters of 120 machines or more. Figure 6.5 repeats the

same experiment, but limits partition size to 300 MB. In that configuration, the 80 recovery

masters recover 24 GB in 1.0 seconds. The overall amount of data that can be recovered is

limited, but the effective recovery bandwidth improves to 24 GB/s compared the 21 GB/s

achieved using 500 MB partitions.

To measure the variability in recovery time, Figure 6.6 gives a cumulative distribution of

recovery time for three-hundred 40 GB recoveries with 80 recovery masters and 500 MB

partitions. The results show that recovery times are consistent across recoveries; in the

experiments recovery time varied less than 200 ms across all 300 recoveries.

Table 6.3 and Table 6.4 give a detailed breakdown of recovery time, network utilization,

and storage performance for an 80-node 40 GB recovery. The breakdown of recovery mas-

ter time shows each recovery master spends about half of recovery time replaying objects.

Most of the rest of the time is spent waiting on data from backups. Of replay time, more

than one-third is spent checking object checksums (about 20% of recovery time on each

recovery master). RAMCloud uses the highly optimized Intel 64 CRC32 instruction to

minimize checksum overhead, but it still takes the largest fraction of time for object replay

on recovery masters.

6.4.1 Bottlenecks in the Experimental Configuration

It appears the current implementation scales well enough to recover an entire server’s

DRAM, but back-of-the-envelope calculations imply that it should be possible to recover

more quickly. Each recovery master should be able to recover 500 MB in less than one sec-

ond, and each backup should be able to read its share of data in about 1.1 seconds (500 MB

at 460 MB/s). If recovery masters overlapped work perfectly with backups reading data

from storage, then recovery times should be about 1.1 seconds, even with an 80 node re-

covery for 40 GB of data. Figure 6.4 shows that the full 80-node cluster takes 1.86 seconds

to recover 40 GB. So, why is recovery 760 ms slower than expected?

Figure 6.4 and 6.6 give some suggestions. First, both of these graphs show that the flash
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Recovery Summary

End-to-end recovery time 1,890.8 ms

Nodes (one recovery master and backup on each) 80

On-storage replicas per segment 3

Object size 1,024 bytes

Objects per partition 498,078

Total objects recovered 39,846,240

38,912 MB

Total log data recovered 40,328 MB

Metadata overhead (in-memory and on-storage) 3.5 %

Coordinator Time

Starting recovery on backups (two broadcasts) 9.7 ms 0.5%

Starting recovery on masters 4.0 ms 0.2%

Servicing recovery master completed RPCs 4.0 ms 0.2%

Waiting for recovery masters 1,872.5 ms 99.1%

Total master recovery time on coordinator 1,890.3 ms 100.0%

Recovery Master Time Average Min/Distribution/Max

Idling, waiting for objects from backups 696.7 ms 38.9% 495

816

Replaying objects into log and hash table 901.2 ms 50.3% 741

1,080

Verifying object checksums 333.0 ms 255

457

Appending objects to in-memory log 270.3 ms 232

315

Managing replication RPCs 23.5 ms 14

60

Replicating objects after replay completes 26.1 ms 1.5% 11

53

Other time 167.9 ms 9.4% 118

358

Recovery time for assigned partition 1,791.9 ms 100.0% 1,700

1,880

Backup Time Average Min/Distribution/Max

Servicing request for replica list 0.2 ms 0.0

0.8

Servicing replication RPCs 802.2 ms 576

1,007

Copying replication data to buffers 796.8 ms 572

1,000

Servicing requests for partitioned objects 6.4 ms 5.6

10.1

Reading replicas from disk 1,268.7 ms 1,115

1,465

Reading replicas from disk and partitioning 1,320.8 ms 1,148

1,504

Table 6.3: Breakdown of recovery time among the steps of recovery. All metrics are taken from one

recovery with 80 recovery masters using 500 MB partitions, which recovers 40 GB of data. Metrics

taken from backups and recovery masters report average times along with the minimum, maximum,

and a distribution. Table 6.4 includes additional statistics taken from the same recovery.
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Figure 6.6: Distribution of recovery time for an 80-node cluster recovering 40 GB. Nodes act both

as a recovery master and a backup; each node recovers one 500 MB partition and manages two

flash SSDs (160 total SSDs cluster-wide). Each line is a cumulative distribution of 300 recoveries

showing the fraction of recoveries that completed within a given time. The minimum, average, and

maximum amount of time backups spent reading data from disk is also shown. The worst recovery

time of all the runs is 1967 ms. The median recovery time is 1864 ms; recovery time ranges less

than 200 ms across all of the recoveries.

SSDs perform more slowly during recovery than they do when benchmarked in Figure 6.2.

During recovery the slowest SSD takes about 1.4 seconds to read its share of the segments

rather than the expected 1.1 seconds. Second, even once all of the data is loaded from

storage, recovery takes another 450 ms to complete, which suggests that recovery masters

cannot replay data as fast as backups can load and filter it. In fact, recovery masters seem

to be replaying log data at about 270 MB/s as compared to the expected 800 MB/s for 1 KB

objects reported by the benchmark in Figure 6.3.

What causes both storage I/O performance to decrease and replay performance to de-

crease? Backups and masters are combined on a single server, so contention for CPU
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Network Utilization Average Min/Distribution/Max

Average transmit rate per host 9.4 Gb/s 9.0

9.9

Aggregate average network utilization 715.5 Gb/s 36% of full bisection

Disk Utilization Average Min/Distribution/Max

Active host read bandwidth 398.5 MB/s 349

447

Aggregate 31,878.9 MB/s

Average host read bandwidth 266.6 MB/s 258

271

Aggregate 21,329.0 MB/s

Segments read from storage per host 63 61

64

Table 6.4: Network and storage statistics for a recovery. All statistics are taken from a single re-

covery with 80 recovery masters using 500 MB partitions, which recovers a total of 40 GB of data.

Statistics are reported as averages along with the minimum, maximum, and a distribution when ap-

propriate. Table 6.3 includes a breakdown of recovery time for the same recovery. Average transmit

rates are total bytes transmitted divided by end-to-end recovery time; peak rates are higher, since

transmit rates vary significantly throughout recovery. Similarly, average storage read bandwidth is

total data read divided by end-to-end recovery time; active storage read bandwidth reports storage

bandwidth over just the intervals of recovery when storage is actively being read.

resources could be a problem. However, that alone would not explain the loss of I/O per-

formance, since it should be mostly independent of CPU utilization. As a result, we focused

on the shared resource between these two tasks: memory bandwidth.

To determine whether memory bandwidth utilization is limiting recovery time, two

questions must be answered. First, what is the maximum memory bandwidth that each node

can sustain? Second, what is the actual memory bandwidth utilization during recovery? To

answer the first question, we first ran an experiment that sequentially accesses cache lines

and measures memory bandwidth utilization. During the experiment, workload is gradually

varied between a pure read-only workload and a pure write-only workload. Figure 6.7

shows the results. The mix of read and write operations has some impact on the amount of

data that can be transferred to and from DRAM, but, for the most part, a node’s memory

bandwidth saturates at about 10 to 11 GB/s.

To address the second question, we measured memory bandwidth utilization during

recovery. In order to understand the impact combining a backup and a recovery master

on each node, experiments were run in two process configurations. The first configuration
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Figure 6.7: Maximum achievable memory bandwidth across a node’s DRAM controller as a func-

tion of DRAM write traffic. A benchmark sequentially accesses cache lines for a large region of

memory to infer the maximum bandwidth to DRAM. The benchmark varies the ratio of read ac-

cesses to write accesses to show the total memory bandwidth for varying mixes of traffic. At the

left end of the graph, the benchmark only reads cache lines. At the right end of the graph, the

benchmark only modifies cache lines; 50% of memory controller traffic is due to cache line reads

even when the benchmark is only modifying cache lines, since each cache line must be fetched into

cache, modified, and written back. Each node has about 10 GB/s of total memory bandwidth to

DRAM.

was the default “combined” configuration, where a master and backup are run together on

each node. The second configuration split the role of the master and backup onto separate

nodes in order to reduce the memory bandwidth utilization on each node. Furthermore,

each configuration was tested both for a smaller recovery including only 6 partitions of

data and 6 hosts (12 hosts when backups and masters are split), and a larger recovery with

40 partitions of data and 40 hosts (80 hosts when backups and masters are split). Recoveries

using more than 40 partitions were not possible in the split configuration; all 80 nodes were

in use, each running either a recovery master or a backup. These recovery sizes correspond

to the size of the recoveries of the leftmost and middle data points in Figure 6.4.

Figure 6.8 plots the results, and shows that memory bandwidth is saturated during re-

covery, mostly due to the load on backups. A recovery master running alone on a node
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Figure 6.8: Memory bandwidth utilization during recovery. “Combined” shows memory band-

width utilization during recovery when each node acts as both a recovery master and a backup as

in Figure 6.4. The “Master” and “Backup” graphs show memory bandwidth utilization throughout

recovery when recovery masters and backups are run on separate nodes as in Figure 6.9. Recoveries

with masters and backups on separate nodes use twice as many nodes as the corresponding recov-

eries with masters and backups combined on the same node. Recoveries labeled “6 Partitions, 6/12

Hosts” correspond to the leftmost data point in Figure 6.4 and recover 3 GB of data total. Recov-

eries labeled “40 Partitions, 40/80 Hosts” correspond to the middle point of Figure 6.4 and recover

20 GB of data total. Nodes running a recovery master alone do not saturate memory bandwidth.

Nodes running a backup alone saturate memory bandwidth during most of recovery. When a recov-

ery master and a backup run on the same node memory bandwidth is saturated for the duration of

recovery, and recovery time increases.
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uses about 2 to 4 GB/s of memory bandwidth, and a backup alone uses about 9 GB/s of

memory bandwidth. Since memory bandwidth saturates at about 10 GB/s, it appears that a

backup alone may already be memory bandwidth constrained. When recovery masters and

backups are placed on a single server, it becomes overloaded; memory bandwidth remains

saturated at about 9 GB/s for the entire recovery, and recovery slows down. Overall, the

results show that the backup component on each node is much more memory bandwidth

intensive than the recovery master component.

Figure 6.9 shows how using the alternate configuration where masters and backups are

run on separate nodes improves overall recovery times. Compared to Figure 6.4, recov-

ery times improve by about 20% for both large and small recoveries. Mitigating memory

bandwidth overload also improves the scalability of recovery; the slope in recovery time is

about 35% lower overall when backups and recovery masters run on separate servers.

The reason memory bandwidth is saturated is an artifact of the size of our experimental

cluster; the work of recovery is concentrated on a small number of nodes, which become

overloaded. In an expected RAMCloud deployment of 1,000 machines or more, recovery

would be spread across more backups. To recover 64 GB from a crashed master, each

backup would only load and process 8 segments and would only expect to receive about

24 new segment replicas. In our 80-node cluster, each backup must process 64 replicas

and backup 192 new replicas. As a result, each backup does eight times the work in nearly

the same period than it would in a realistic deployment. Furthermore, each node in this

configuration also acts as a recovery master, whereas in a full scale cluster, less than 10%

of nodes would have to perform both roles at the same time. Thus, recovery should be both

faster and more scalable in a larger production cluster than in our experimental cluster.

Newer CPUs provide substantially higher memory bandwidth and additional cores

compared to the nodes of our experimental cluster. On newer machines, placing recov-

ery masters together with backups in a small cluster should have a less drastic effect on

recovery time. For example, benchmarking a machine that is two years newer showed that

its memory bandwidth is about 47 GB/s: more than four times higher than the machines

used in these experiments. On the other hand, newer machines also have higher DRAM

capacity, so newer hardware may still require a large cluster to recover an entire server’s

DRAM quickly.
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Figure 6.9: Recovery time as crashed master size and cluster size are scaled when recovery masters

and backups are run on separate nodes. Just as in Figure 6.4, a master is filled with 500 MB for each

recovery master in the cluster. The master is then crashed and recovered. In these recoveries, two

nodes are added for each partition recovered: one operating as a recovery master and one operating

as a backup. Lines from Figure 6.4 are shown as dotted gray lines for comparison. Separating

the work of backups and masters improves overall recovery time. The flash SSDs perform more

consistently and finish reading replicas more quickly. Also, the time between when backups finish

loading replicas into DRAM and when recovery masters finish replaying data is shorter. Each point

is an average of 5 runs.
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6.4.2 Recovery Coordination Overhead

It is important to keep the overhead for additional masters and backups small, so that re-

covery can span hundreds of hosts in large clusters. For example, the coordinator performs

three rounds of broadcast during recovery; if the time for these broadcasts grows to a sub-

stantial fraction of recovery time in a large cluster, then large recoveries may become im-

practical. As another example, recovery masters must perform more RPCs per byte of data

recovered as the number of partitions used during recovery increases. A full failed master

always leaves behind the same number of replicas, and each recovery master always re-

covers the same amount of data regardless of the number of partitions. However, as more

partitions/recovery masters participate in recovery, each replica is broken down into more

buckets, each of which is smaller. Recovery masters fetch data from backups one bucket at

a time, so they must make more requests to collect the same amount of data as the number

of partitions increases. If it becomes impossible to keep recovery masters busy as a result,

then recovery time will suffer.

In order to isolate the overhead of the recovery coordination broadcasts, we measured

recovery time with artificially small segments that each held a single 1 KB object and kept

all segment replicas in DRAM to eliminate disk overheads. The bottom series of points in

Figure 6.10 shows the recovery time using trivial partitions containing just a single 1 KB

object in a single segment; this measures the cost for the coordinator to contact all the

backups and masters during the recovery setup phase, since the time to replay the objects

on recovery masters is negligible. Our cluster scales to 80 recovery masters and backups

with only about a 10 ms increase in total recovery time thanks to our low-latency RPC

system.

The upper series of points in Figure 6.10 exposes the overhead for recovery masters

to perform the increased communication with backups required as the number of parti-

tions scales. It plots recovery time for a crashed master with 63 segments each containing

one object. In this configuration, the cluster performs roughly the same number of RPCs

(shown as the dashed line) to fetch data from backups and re-replicate data to backups

as it does when recovering 500 MB partitions using 8 MB segments, but very little data

is processed. As a result, the results expose RPC overheads as recovery scales. As the
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Figure 6.10: Recovery management overhead as a function of system scale. Segment size is lim-

ited to single 1 KB object and segment replicas are stored in DRAM in order to eliminate overheads

related to data size or disk. Recoveries with “1 Segment per Partition” recover a single object per re-

covery master. This measures the coordinator’s overheads for contacting masters and backups. With

80 nodes, the fastest possible recovery time is about 10 ms. Recoveries with “63 Segments per Par-

tition” recover the same number of segments as the full 500 MB partitions used in Figure 6.4, but

each segment only contains a single 1 KB object. In this configuration, each node performs roughly

the same number of RPCs (shown as the dashed line) as it would in a full recovery but without the

transfer and processing overheads for full 8 MB segments. It measures the overhead of the increased

communication required between masters and backups to split recovery across more recovery mas-

ters. Each node acted as both a recovery master and a backup. Each data point represents a single

recovery; recoveries are repeated five times each for all numbers of partitions from 6 to 80 to show

variability.
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system scale increases, each master must contact more backups, retrieving less data from

each individual backup. Each additional recovery master adds about 600 µs of overhead,

so work can be split across the 120 recovery masters needed to recover a full 64 GB server

while accounting for less than 7% of total recovery time. At the same time, this overhead

represents about 12% (120 ms) of a one-second recovery time using 200 recovery masters,

so it may constitute a noticeable delay for larger recoveries.

6.5 The Limits of Fast Crash Recovery

The experiments of this chapter raise questions about the limits of fast crash recovery as

cluster size is scaled up or down. Experiments indicate that recovery times will begin to

suffer noticeable overheads when scaling beyond a few hundred recovery masters. What

is the largest server that can be recovered in 1 to 2 seconds today? Will recovery be able

to retain 1 to 2 second recovery times as server hardware evolves, particularly as DRAM

capacity grows? What changes will be needed for fast recovery to be effective for future

clusters? At the same time, what is the smallest cluster for which fast crash recovery is

effective? Our 80 node cluster is already heavily overloaded in providing 2 second recovery

times for 40 GB of data. Will long recovery times in small clusters make RAMCloud

impractical for small datasets? Finally, what is the fastest possible recovery for a full 64 GB

master in a large cluster, and what would be the bottleneck in sub-second recoveries?

6.5.1 Scaling Up

The key question for the long-term viability of fast recovery is, “how much data can a suf-

ficiently large RAMCloud cluster be expected to recover in 1 to 2 seconds?” To answer

this question, we use the measurements from earlier experiments to project the amount of

data a cluster could recover if recovery time were fixed to either 1 or 2 seconds. Figure 6.9

showed that when servers are not overloaded they recover data at about 360 MB/s. Analyz-

ing the slope of that same figure, recovery time increases by about 1.8 ms for each server

added to recovery. Using these numbers we can project how much data can be recovered

as cluster size grows. The top graph of Figure 6.11 shows the results. The second line from
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Figure 6.11: Projection of the maximum size of crashed server recoverable in 1 or 2 seconds. Each

line shows how much data can be recovered depending on how quickly each recovery master replays

data and whether recovery time is fixed at 1 or 2 seconds. The top graph assumes each additional

recovery master adds 1.8 ms of wasted time due to coordination overhead (derived from the slope

of Figure 6.9). The bottom graph assumes each additional recovery master adds 600 µs of wasted

time to recovery (derived from the more optimistic slope of Figure 6.10). Note, the scales do not

match between the two graphs. Today’s implementation should scale to recover a failed master with

200 GB of data in 2 seconds with about 560 recovery masters (top graph, second line from the top).

If the overhead of adding a recovery master drops to 600 µs, recovery scales to 3 times as many

machines and should recover 600 GB servers in 2 seconds (bottom graph, second line from the

top). Lines labeled “720 MB/s recovery masters” project how much could be recovered if recovery

master performance is doubled (for example, by spreading replay across multiple cores). With the

higher recovery master performance, servers as large as 1.2 TB could be recovered in 2 seconds.
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the top shows that RAMCloud should be able to recover 200 GB of data using 560 recov-

ery masters when recovery time is limited to 2 seconds. When recovery time is limited to

1 second (the solid line), server capacity must be limited to 50 GB, even in large clusters.

These estimates are likely to be optimistic. There will be unexpected super-linear costs

hidden in the implementation that will be exposed as RAMCloud is run on large clusters;

however, these bottlenecks should not be fundamental to the design.

Recovery bandwidth can be improved in two ways to recover larger servers. The first

way is by making each server faster. If backups can load data more quickly and recovery

masters can replay data more quickly, then more data can be recovered in 1 to 2 seconds.

The second way is to reduce the overhead of including more recovery masters in recovery,

which allows recovery to be split efficiently across more servers. Figure 6.11 suggests

that both optimizations will be needed in order to scale to recover the growing DRAM of

machines; each recovery master will need to perform more work, and RAMCloud will need

to eliminate overheads to incorporate more recovery masters.

Improving recovery master performance will require additional server-localized opti-

mizations to take advantage of multicore and non-uniform memory access (NUMA). Re-

cently, CPU performance has seen little single-core performance gain. Instead, newer

CPUs provide more cores and more sockets. Server memory controllers have seen a similar

trend; NUMA is now ubiquitous in server architectures. To achieve the best performance,

developers must partition data across DRAM banks attached to different cores and make

an effort to co-locate computation on the core nearest to the desired data. To recover more

data more quickly, recovery masters will have to be adapted to spread the work of recovery

across all of the cores and all of the memory controllers of each machine.

Some effort will be required to determine the most efficient way to divide the work of

recovery across many cores and memory controllers on each recovery master. Recovery

masters could break up the work of recovery in a fine-grained way by replaying different

data from segment replicas on different cores in parallel. However, cores would need to

share access to a single hash table, in-memory log, and replica manager. All of these

structures are thread-safe and provide fine-grained locking where possible, but parallel

recovery threads would contend for access to these structures. The in-memory log may

be a particularly serious bottleneck since all appends to the head of the log are serialized.
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A more coarse-grained approach would be to run logically separate masters on each server.

This would limit contention on shared data structures, but it may not provide an overall

improvement if overhead of including each of these logical recovery masters in recovery is

just as high as it is for a standard recovery master today.

Servers with 8 cores are ubiquitous today and 16 cores are common, so obtaining a

two-fold recovery master performance over the 4-core machines used in evaluation seems

attainable. Multicore and NUMA optimizations would have provided little benefit in our

experimental cluster; each server only provided a single memory controller and all cores

were fully utilized even with a single core replaying recovery data. Additional lines in Fig-

ure 6.11 show recovery capacity when recovery master performance is doubled to 720 MB/s;

recovery capacity is doubled, so failed servers with 400 GB of DRAM could be recovered

in 2 seconds. If recovery master performance were improved to more than 1 GB/s, then

network bandwidth would start to become a limitation, since each recovery master must

triplicate all the data it processes; servers would need to move to 56 Gbps Infiniband or

100 Gbps Ethernet if recovery master performance quadrupled.

Reducing the overhead for including additional recovery masters in recovery is just as

essential to improving recovery capacity as improving recovery master performance. Fig-

ure 6.10 measured “data-less” recoveries that perform the same number of RPCs as a full

recovery. The results showed that recovery time increases by about 600 µs for each addi-

tional recovery master. In a large-scale recovery, each RPC contains very little data, similar

to these data-less recoveries. Optimistically, if full recoveries could be tuned to scale with

equally low overheads, then the amount of data that can be recovered in 1 to 2 seconds

would improve by a factor of 3. The bottom graph of Figure 6.11 shows the same recovery

configurations as the upper graph except with a 600 µs overhead to add a recovery master

instead of 1.8 ms. With this change, 600 GB masters could be recovered in 2 seconds.

Taken together with multicore optimizations, recovering a failed 1.2 TB master should be

possible in 2 seconds with about 1600 machines.
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6.5.2 Scaling Down

Not only do our experiments raise questions about scaling up recovery, but they also raise

questions about how well recovery will work in small RAMCloud clusters. Figure 6.5

shows that RAMCloud recovers the full capacity of one of our (24 GB) nodes in 1.0 seconds

using our entire 80-node cluster, but less and less data can be recovered in the same time

period as cluster size scales down. With fewer nodes there are fewer recovery masters,

which limits the amount of data that can be recovered in a few seconds. For example,

the same figure shows that a cluster of 6 nodes only recovers 1.8 GB of data in about

900 ms. Using 500 MB partitions (Figure 6.4), 6 nodes can recover 3 GB of data in about

1.65 seconds. Thus, a 6-node cluster can only support about 3 GB of data per node while

retaining a 2-second recovery time.

Severely limiting per-server capacity hurts RAMCloud’s cost-effectiveness at small

scale. This is problem is compounded, since servers with 64 GB to 256 GB of DRAM

capacity are most cost-effective today. For small clusters, a different or supplementary

approach may be more cost-effective. For example, a small cluster could duplicate each

object in the DRAM of two servers in addition to logging data on disk as usual. Since fail-

ures are infrequent in a small cluster, two-way replication is likely to be sufficient. Online

redundancy would eliminate lapses in availability and provide additional time to recon-

struct the lost object replicas. Returning to the 6-node cluster, DRAM utilization could be

safely improved to 50%, a ten-fold increase in per-server capacity over using fast recov-

ery alone. Buffered logging would still be necessary to protect against data loss during

correlated failures and power loss.

Adding servers to a small cluster causes a quadratic improvement on the overall capac-

ity of a RAMCloud cluster. This is because each added server brings along two benefits.

First, it adds more DRAM capacity. Second, it can act as a recovery master, which al-

lows more DRAM capacity of each of the existing masters to be used safely. Thus, adding

servers is particularly cost-effective way to increase cluster capacity up until the amount of

data that can be recovered in 1 to 2 seconds exceeds the DRAM capacity of an individual

server. Thus, our 2 TB 80-node cluster with 24 GB servers and a 1.0 second recovery takes

full advantage of this quadratic effect; we can use all of the DRAM of the cluster safely.
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6.5.3 What Is the Fastest Possible Recovery?

Assuming a large cluster, it should be possible to recover an entire server in less than 1

second by using more backups, more recovery masters, and smaller partitions. Given a

cluster unbounded in size, what is the fastest a full server with 64 GB of DRAM can be

recovered? The key constraint is how quickly the coordinator can contact servers; the faster

the coordinator can broadcast, the wider it can spread the work of recovery, which boosts

recovery bandwidth.

Using an estimation of coordinator broadcast times, recovery master replay bandwidth,

and flash I/O performance yields a best-case lower-bound of 330 ms to recover a 64 GB

server using a 2,000 node cluster with today’s implementation. The bottom set of points

in Figure 6.10 measure the cost of coordinator broadcast during recovery. It shows that an

80-node recovery can perform the three broadcasts required for recovery (along with small

amount of other work) in about 10 ms. Assuming each of the three 80-node broadcasts

takes about one-third of that (3 ms), each coordinator broadcast should scale to take about

80 ms in a 2,000 node cluster. Each flash disk can read a segment replica in about 30 ms, so

if a 64 GB server is divided into 8,000 segments scattered across 2,000 servers with 2 flash

disks each, then each server should be able to load its primary replicas in about 60 ms.

Factoring in the time for the initial broadcast, all the required data for recovery should be

completely loaded from storage within 140 ms after the start of recovery. The coordinator

would start its third broadcast to start recovery masters 160 ms into recovery (after the first

two rounds of broadcast). Assuming each recovery master can replay data at 360 MB/s

and accounting for broadcast time, 2,000 recovery masters could replay the data in about

170 ms. As a result, 330 ms would be a near-optimal recovery time for a failed 64 GB

server, and a 2,000 machine cluster would be required. Using a larger cluster is slower due

to longer broadcast times, and using less machines is slower due to reduced I/O and replay

bandwidth.

If coordinator broadcast times were made nearly instantaneous, then recovery times as

low as 50 ms should be possible. Each server would read a single replica from storage

in about 30 ms, all replicas would become available in DRAM at the same time, and the
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recovery masters would replay them in about 20 ms. Though broadcasts cannot be instan-

taneous, recovery could use a tree-like pattern to spread the work quickly. Recovery would

then be able to spread work across a number of nodes exponential to broadcast time (in-

stead of linear, as it is now). In the time of about 12 back-to-back RPCs by the coordinator,

recovery could be spread across 4,000 nodes; in this case, each SSD would only need to

load a single segment, which would provide very near minimal recovery times.

6.6 How Well Does Segment Scattering Work?

During normal operation, each master works to optimize recovery time by balancing the

amount time each disk will have to spend reading data during recovery. Balancing disk

reading time eliminates stragglers and improves recovery time, since the cluster never has

to wait idly on a few slow disks to finish loading data. Is this optimization necessary, and

is it effective? In particular, how does it impact recovery time when disk performance is

relatively uniform and when disk performance is highly variable? Can it mask degraded

performance due to defective disks, and will it be able to hide performance differences

between disk models?

To answer these questions, we ran an experiment that varied the algorithm used to

distribute segment replicas and measured the impact on recovery time. In these experi-

ments, the two flash SSDs in each node were replaced with two traditional hard disks, one

each of two different models (Configuration 2 in Table 6.2). Our disks have greater per-

formance variance than our SSDs, and RAMCloud must effectively compensate for this

additional variance in order to recover quickly. We measured three different variations of

the placement algorithm: the full algorithm, which considered both disk speed and num-

ber of primary replicas already present on each backup; a version that used purely random

placement; and an in-between version that attempted to even out the number of primary

replicas on each backup but did not consider disk speed. The top graph in Figure 6.12

shows that the full algorithm improved recovery time by about 33% over a purely random

placement mechanism. Much of the improvement came from evening out the number of

segments on each backup; considering disk speed improved recovery time by only 12%

over the even-segment approach because the disks did not vary much in speed.
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Figure 6.12: Impact of segment replica placement and variance in storage performance on recovery

time. In this experiment, the two flash SSDs in each node are replaced with two traditional hard

disks, one each of two different models (Configuration 2 in Table 6.2). In each recovery, 20 recovery

masters each recover 600 MB of a 12,000 MB crashed master from 60 backups (120 total disks).

Each line is a cumulative distribution of 120 recoveries showing the fraction of recoveries that

completed within a given time. The disks provide about 12,000 MB of combined read bandwidth,

so ideally recovery should take about 1 second. “Even Read Time” uses the placement algorithm

described in Section 4.3; “Uniform Random” uses a purely random approach; and “Even Segments”

attempts to spread segment replicas evenly across backups without considering disk speed. The top

graph measured the cluster in its normal configuration, with relatively uniform disk performance;

the bottom graph measured the system as it was shipped (unnecessarily high fan speed caused

vibrations that degraded performance significantly for some disks). With fans at normal speed,

“Even Read Time” and “Even Segments” perform nearly the same since there is little variation in

disk speed.
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To test how the algorithm compensates for degraded disk performance we also took

measurements using the configuration of our cluster when it first arrived. The fans were

shipped in a “max speed” debugging setting, and the resulting vibration caused large vari-

ations in speed among the disks (as much as a factor of 4×). The performance degradation

disproportionately affected one model of disk, so about half of the disks in the cluster op-

erated in a severely degraded state. In this environment, the full algorithm provided an

even larger benefit over purely random placement, but there was relatively little benefit

from considering replica counts without also considering disk speed (Figure 6.12, bottom

graph). RAMCloud’s placement algorithm compensates effectively for variations in the

speed of disks, allowing recovery times almost as fast with highly variable disks as with

uniform disks. Disk speed variations may not be significant in our current cluster, but we

think they will be important in large data centers where there are likely to be different

generations of hardware.

6.7 Impact of Fast Crash Recovery on Data Loss

RAMCloud replicates each segment across backups of the cluster to protect against data

loss. By default, each master stores three copies of data on backups in addition to the copy

of data stored in its DRAM. As a result, RAMCloud will never lose data until at least four

nodes are inaccessible. However, the threat of data loss rises when too many machines are

simultaneously unavailable.

This suggests two ways to improve durability: increased redundancy and fast recovery.

Increasing redundancy increases the number of simultaneous failures a cluster can sustain

without threat of data loss. Fast recovery reduces the length of each individual failure,

which reduces the probability of overlapping failures. Fast recovery has an advantage in

that it does not require additional storage capacity; however, additional redundancy is also

beneficial, because it improves resilience against bursts of failures. Given these two ap-

proaches how should a system trade-off between them? Should a system just keep a two

copies of data on disk and recreate lost replicas in 1 second? Is it better to keep three

replicas of every segment and recreate lost replicas in 100 seconds?
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Figure 6.13: Probability of data loss in one year as a function of cluster size, assuming 8,000 seg-

ments per master and two crashes per year per server with a Poisson arrival distribution. Different

lines represent different recovery times and levels of replication. “2 replicas” indicates two disk-

based replicas with one additional replica in DRAM; “3 replicas” keeps a third replica on disk.

When keeping two on-disk replicas, reducing recovery time by a factor of 100 reduces the proba-

bility of data loss by a factor of 10,000. If recovery time is fixed at 100 seconds and three copies

are stored on disk rather than two, then the probability of data loss improves by a factor of 25,000.

The gap between 1 second recovery with 2 and 3 replicas shows that fast recovery reduces the prob-

ability of data loss even more effectively as the replication level goes up. Many real systems have

recovery times on the order of 100 seconds (like GFS [18]), and improving their recovery times

would increase their fault-tolerance in larger clusters.
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To answer these questions, we simulated the probability of data loss with varying re-

covery times and replication configurations. For these simulations, we assume that a single

server will fail about twice per year and that server failures are independent. Data provided

by Ford et. al. [15] suggest that servers will fail with about this frequency. For a 3-month

period they recorded between about four to ten failures per 1,000 servers per day on most

days. This translates to about two to four failures per server per year. Simulations were run

with 1-second recovery and with 100 second recovery, which is the recovery time of some

other data center storage systems (for example, GFS [18]). Simulations are repeated with

two and three on-disk replicas. Note that two on-disk replicas corresponds to the typical

triple replication level of many disk-based systems (like GFS), since RAMCloud stores an

additional replica in DRAM.

Figure 6.13 plots the probability of data loss as cluster size grows for each of these

configurations. The top line shows that with long recovery times two replicas on disk is

insufficient; a large cluster has a 20% chance of losing data each year. Adding an additional

replica reduces the probability of data loss by about a factor of 25,000 (the third line from

the top). If two replicas are retained and recovery time is decreased to 1 second instead,

then the probability of data loss each year drops by a factor of about 10,000. Overall, the

key observation is that improving recovery time by a factor of 100 (as RAMCloud does

over typical systems) is nearly as effective at preventing data loss as adding an additional

replica. Corroborating this further, adding a third replica on disk decreases the risk of data

loss more significantly when recovery time is 1 second than when it is 100 seconds. That

is, fast recovery makes adding a third replica more effective in preventing data loss.

Although we made all of the performance measurements in this chapter with 3× on-disk

replication to be conservative, Figure 6.13 suggests that the combination of two copies on

disk and one copy in DRAM may be enough protection against independent server failures.

The main argument for 3× disk replication is to ensure 3-way redundancy even in the event

of a data center power outage, which would eliminate the DRAM copies. With 3× disk

replication in addition to the DRAM copy, the likelihood of data loss is extremely small:

less than 1× 10
−12 per year with 1-second recovery times, even with 100,000 nodes.
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6.7.1 Vulnerability to Correlated Failures

One risk with Figure 6.13 is that it assumes server failures are independent. There is con-

siderable evidence that this is not the case in data centers [10, 15, 46]; for example, it is

not unusual for entire racks to become inaccessible at once. Thus, it is important for the

segment scattering algorithm to compensate for sources of correlated failure, such as rack

boundaries. For example, to recover from rack failures RAMCloud should ensure that no

two replicas of a segment are stored on servers in the same rack. If there are unpredictable

sources of correlated failure (for example, disks, CPUs, or DRAM that share a manufac-

turing flaw), they will result in longer periods of unavailability while RAMCloud waits for

one or more of the backups to reboot or for defective hardware to be repaired; RAMCloud

is no better or worse than other systems in this respect.

Cidon et. al. [8] show that RAMCloud’s random scattering (as proposed in this dis-

sertation) will result in data loss when a small percentage of machines fail simultaneously.

Unfortunately, due to power failures these types of failures happen as frequently as a few

times per year. The intuition for the problem is that each segment is scattered on three

servers selected at random plus its master, and for a particular segment losing the four ma-

chines it is stored on simultaneously results in data loss. In a large cluster, tens-of-millions

of segments must be scattered, which creates many four-combinations of server failures

that will cause data loss when they fail together. The authors provide a solution, which has

been implemented in RAMCloud, that preserves the throughput benefit of scattering repli-

cas for fast recovery and has no impact on normal case performance. They also provide

analysis on how the same mechanism can be used to mitigate data loss in large GFS and

HDFS [46] clusters.

6.8 Summary

The evaluation of crash recovery shows that recovery bandwidth scales as cluster size

scales. With 80 nodes, equipped with flash SSDs, RAMCloud recovers data from a crashed

masters at about 21 GB/s. The size of our cluster limits our experiments; however, our re-

sults show that recovery can be spread across more nodes with little overhead. As a result,
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we expect that the entire contents of a 64 GB crashed master could be recovered in about

2 seconds with a cluster of 120 machines similar to those used in our experiments.

Our experiments also show that recovery time is hampered by memory bandwidth in

our small cluster. This would be mitigated in a full scale RAMCloud deployment, where

recovery could be spread across hundreds or thousands of machines. Consequently, we

expect recovery times to improve significantly in larger clusters.

Using 8 MB segments with RAMCloud’s buffered logging allows backups to utilize at

least 85% of the maximum bandwidth of their storage devices for flash SSDs and traditional

hard disks. RAMCloud also compensates well for differences in storage performance by

scattering segments intelligently based on disk speeds. With about half of our disks operat-

ing in a severely degraded state that resulted I/O bandwidth variance of 4 ×, recovery time

only increased by about 30%.

Extrapolating from the experiments of this chapter, we can project the limits of the cur-

rent recovery implementation. A cluster of about 560 machines should be able to recover

about 200 GB of data in 2 seconds. In order to keep up with growing DRAM capacities, re-

covery will need two improvements. First, the broadcast overhead must be reduced in order

to spread recovery across more machines. Second, each recovery master will need to re-

cover more data. With improvements to broadcast times and recovery master performance

2-second recoveries for machines with more than 1 TB of data should be possible.

Small clusters can only recover a fraction of a server’s DRAM, since there a limited

number of recovery masters. In small clusters, leaving part DRAM idle on some machines

may make RAMCloud impractically expensive for some applications. In the future, it may

make sense for RAMCloud to use some form of redundancy in DRAM as a supplement to

fast recovery, so that masters can safely use more of their DRAM for data storage.

Small clusters can only recover a fraction of a server’s DRAM, since they have a limited

number of servers to act as recovery masters. As a result, a small cluster would need to

leave most of the DRAM of its servers idle to ensure fast recovery after failures. However,

this may make RAMCloud impractically expensive for some applications. In the future,

it may make sense for RAMCloud to use some form of in-memory redundancy in small

clusters to supplement fast recovery. This would allow masters use more of their DRAM

for data storage without jeopardizing availability.
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In large clusters it should be possible to recover entire servers in less than one second.

Based on measured broadcast and flash I/O performance, it may be possible to recover a

64 GB server in about 330 ms using 2,000 machines. With more machines, coordination

overhead begins to degrade recovery times; with less machines I/O time hampers recovery

time.

By modeling data loss due to server failures in larger clusters, we have determined that

under independent failures shorter recovery times are more effective at preventing data loss

than increased redundancy. Our analysis shows 1-second recovery times improve reliability

by about a factor of 10,000.



Chapter 7

Related Work

Data center storage systems build on the well-studied areas of distributed file systems and

databases. Consequently, RAMCloud uses ideas from each of these areas, while recom-

bining them in a new context. It draws heavily on prior work on in-memory databases,

log-structured file systems, striping filesystems, and database/file server crash recovery.

At the same time, RAMCloud’s push for unnoticeably-fast crash recovery along with its

dependence on large-scale operation prevents the straightforward application of many ex-

isting ideas.

A variety of “NoSQL” storage systems have appeared recently, driven by the demands

of large-scale Web applications and the inability of relational databases to meet their needs.

Examples include Dynamo [11], Cassandra [30], and PNUTS [9]. All of these systems

are fundamentally disk-based and none attempt to provide latencies in the same range as

RAMCloud. These systems provide availability using symmetric replication and failover

to redundant copies on disk, rather than relying on fast crash recovery.

7.1 DRAM in Storage Systems

7.1.1 Caching

DRAM has historically been a critical part of storage; early database systems and oper-

ating systems as early as Unix augmented storage performance with page/buffer caching

112
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in DRAM. With buffer caching, rather than directly accessing disk, applications request

data from a DRAM cache, which is filled from storage when the requested data is not in

memory. The growing performance gap between disk and DRAM, along with increasing

application working sets [12], has made buffer caches an indispensable component of all

of operating systems. Work on file system caching resurged in the 1980s and 1990s as dis-

tributed file systems saw wide deployment. Distributed file system clients in Echo, DEco-

rum, SpriteFS, and Spritely NFS compensated for the low bandwidth of early workstation

networks by caching blocks in memory [23, 29, 41, 47].

More recently, many web applications have found the caching and buffer management

provided by their storage systems to be inadequate and instead rely on external application-

managed look-aside DRAM caches like memcached [37]. Memcached instances are often

federated across many servers and allow cache size to be tuned independently of the un-

derlying stable storage system. Facebook offers an extreme example of this approach to

large-scale DRAM caching; it offloads database servers with hundreds of terabytes DRAM

cache spread across thousands of machines running memcached [39]. In short, caches are

growing, and DRAM is playing an ever-increasing role in storage systems.

Unfortunately, even with aggressive caching, performance in these systems is still lim-

ited by disks. For example, due to the performance gap between disk and DRAM, an

application with a cache hit rate of 99% would still result in a 10× slowdown compared to

a 100% cache hit rate (that is, when all data is kept in DRAM). Furthermore, cache misses

result in access times 1,000× worse than hits, which makes cache performance difficult to

predict. RAMCloud avoids these problems, since it is not a cache; all operations are ser-

viced from DRAM. Access times are more predictable and are only limited by networking

latency.

Caching mechanisms like memcached appear to offer a simple mechanism for crash re-

covery; if a cache server crashes, its contents can simply be reloaded on demand, either on

the crashed server (after it restarts) or elsewhere. However, in large-scale systems, caching

approaches can cause large gaps in availability after crashes. Since these systems depend

on high cache hit rates to meet their performance requirements, if caches are flushed, then

the system may perform so poorly that it is essentially unusable until the cache has re-

filled. Unfortunately, these caches are large and take a long time to refill, particularly since
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they are typically reloaded using small, random disk I/Os. This happened in an outage at

Facebook in September 2010 [26]: a software error caused 28 TB of memcached data to

be flushed, rendering the site unusable for 2.5 hours while the caches refilled from slower

database servers. Nishtala et. al. [39] further describe these cascading failures due to over-

load when cache servers fail. They describe reserving 1% of their memcached servers as

standbys that are swapped into service when a cache server fails. The result is a 10-25%

reduction in requests to database servers due to server failures. RAMCloud avoids these

issues by recovering full performance after failures in 1 to 2 seconds. It never operates in a

degraded state.

Some primarily disk-based data center storage systems allow in-memory operations on

parts of datasets. For example, Bigtable [7] is a data center storage system in wide use

at Google that allows entire “column families” to be loaded into memory. By contrast,

RAMCloud keeps all data in DRAM, so all design choices in RAMCloud are optimized

for in-memory operation; RAMCloud provides no means to query data stored on disk.

7.1.2 Application-Specific Approaches

Recently, some large-scale web applications have found fast and predictable access impor-

tant enough to build application-specific approaches to storing entire datasets in DRAM

that span many machines. Web search is an example; search applications must sustain high

throughput while delivering fast responses to users. A single user query may involve RPCs

to hundreds or thousands of machines. Even if just 1% of RPCs resulted in disk access,

nearly every response to a user query would be delayed. Consequently, both Google and

Microsoft keep their entire Web search indexes in DRAM, since predictable low-latency

access is critical in these applications. These systems use DRAM in adhoc ways; new

services and data structures are developed to expose DRAM for each new application. In

contrast, RAMCloud exposes DRAM as a general-purpose storage system. One of RAM-

Cloud’s goals is to simplify the development of these types of applications.
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7.1.3 In-memory Databases

Designs for main-memory databases [13, 16] emerged in the 1980s and 1990s as DRAM

grew large enough for some datasets (about 1 GB), though these designs were limited to a

single machine. Recently, interest in main-memory databases has revived, as techniques for

scaling storage systems have become commonplace. One example is H-Store [28], which

keeps all data in DRAM, supports multiple servers, and is general-purpose. However, H-

Store is focused more on achieving full RDBMS semantics and less on achieving large

scale or low latency to the same degree as RAMCloud. H-Store keeps redundant data in

DRAM and does not attempt to survive coordinated power failures.

Avoiding Disk-Limited Performance

Early single-machine in-memory databases pioneered techniques to leverage disks for dura-

bility without incurring high disk write latencies on the fast path. Like RAMCloud, a key

goal of these systems was to expose the full performance of DRAM-storage to applications,

and logging was a key component of the solution. Unlike RAMCloud, these logs were not

the final home of data. Instead, the DRAM state was periodically checkpointed to disk, at

which point these “commit” logs were truncated. As a result, these databases wrote all data

to disk twice: once as part of the log and once as part of a checkpoint. This increased their

consumption of disk bandwidth. In RAMCloud, the log is the location of record for data;

requests for data are always serviced directly from the log. This has a substantial difference

in how recovery is performed; recovery in RAMCloud consists purely of log replay. There

is never a checkpoint to load. Also, RAMCloud reclaims log space using a log cleaner,

rather than relying on checkpointing and truncation.

One key technique these systems used for taking full advantage of disk bandwidth was

group commit, which batched updates and flushed them to disk in bulk [13, 17, 19, 33].

Group commit allowed these databases to operate at near-maximum disk bandwidth, but

since transaction commit was delayed, update operations still incurred full disk latency.

Group commit played a similar role to RAMCloud’s segments, and allowed many opera-

tions to be flushed to disk in a single contiguous operation. Group commit is insufficient

for RAMCloud, since synchronous disk writes are incompatible with its latency goals.
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To hide the latency mismatch between disks and DRAM, several of these early in-

memory databases also used or proposed non-volatile memory for log buffering [13, 14,

16, 31]. Baker suggested a similar solution in the context of the Sprite distributed filesys-

tem [4], which used battery backed RAM to allow safe write caching. These earlier works

found that even a modest amount of non-volatile storage (a megabyte or less) is enough

to hide storage latency and achieve high effective throughput. RAMCloud draws a similar

conclusion and only requires the most recently written segment replicas to be buffered for

high normal-case performance. RAMCloud provides stronger fault-tolerance than these

single-machine systems, since it replicates data in non-volatile buffers on other servers in

the clusters, whereas these systems stored a single copy of data locally.

7.2 Crash Recovery

7.2.1 Fast Crash Recovery

Many of the advantages of fast crash recovery were outlined by Baker [3, 5] in the con-

text of distributed file systems. Her work explored fast recovery from server failures in the

Sprite distributed filesystem. Restarting after server failures in SpriteFS required recover-

ing cache state distributed across clients. Baker noted that fast recovery

• may constitute continuous availability if recovery time is short enough,

• may be more cost-effective than redundancy or high-reliability hardware,

• may be simpler than engineering reliability into normal operation,

• and may have no impact on normal case performance.

RAMCloud’s fast crash recovery is motivated precisely by these advantages, and its re-

liance on DRAM amplifies each of these benefits.

File system server cost was a key constraint for Baker’s work in the 1990s, but data cen-

ters have made redundant and large scale use of hardware cost effective. Baker achieved

recovery times of 30 seconds for failed distributed file system servers. RAMCloud is able

to improve this by an order of magnitude even while performing more work by relying on
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scale. Baker’s recovery times were limited almost entirely by server reboot time; RAM-

Cloud sidesteps this problem by storing data redundantly across the cluster and relocating

data to new machines when servers fail. Such a solution would have been impractical in

1994, but is natural in today’s data centers where machines are abundant.

7.2.2 Striping/Chunk Scattering

Striping data across multiple disks or nodes has been used in several contexts for improved

reliability and throughput. Garcia-Molina and Salem [16] observe that the write through-

put of a durable in-memory database is limited by local disk throughput, so they suggest

striping commit logs across many disks. RAMCloud’s primary motivation is high read

bandwidth during recovery rather than high write bandwidth, but striping across all of the

disks of the cluster also affords masters high burst write bandwidth as well. The Zebra [20]

distributed filesystem recorded client operations in a log, which it striped across multiple

storage servers.

More recently, striping has become ubiquitous in data center filesystems like the Google

File System (GFS) [18], the Hadoop Distributed File System (HDFS) [46], and Windows

Azure Storage [6]. These systems provide specialized support for applications to use them

as a high-bandwidth high-reliability log. As applications log data, it is divided into chunks

that are replicated and scattered across a cluster; these chunks are equivalent to RAMCloud

masters’ segments, which are also used as a unit of replication and scattering. These sys-

tems play a similar role to RAMCloud’s backups, and they provide durability for data center

storage systems like Bigtable [7], HBase [21], and Windows Azure Tables [6]. RAMCloud

is even more dependent on striping than these disk-based database systems, since high read

bandwidth is a prerequisite for fast crash recovery.

7.2.3 Partitioned Recovery

While discussing single-node in-memory database recovery, Garcia-Molina and Salem [16]

observe that local DRAM bandwidth can be a barrier to fast recovery. They note that if a

database checkpoint is striped across many disks, then each disk needs an independent path

to memory to be most useful. This same insight drives RAMCloud to partition recovery
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across all of the nodes of the cluster. Since each backup reads a small fraction of a crashed

master’s replicas, each of the disks has an independent path to memory. Similarly, each

recovery master recovers a single partition of a crashed master, which divides data flowing

from storage across the network, CPU, and memory bandwidth of many hosts.

Bigtable uses a partitioned approach to recovery that shares many similarities to RAM-

Cloud’s recovery. It distributes recovery by reassigning tablets across many other servers

in the cluster. Tablets are kept small (100 to 200 MB) by splitting them as they grow, so

the work of recovery can be distributed relatively evenly among all the nodes of the cluster.

RAMCloud does not pre-divide or pre-partition masters’ tablets; instead, it allows tablets to

grow to the full size of DRAM, and it only decides how tablets will be divided at recovery

time.

Similar to RAMCloud recovery, Bigtable servers must replay data from a commit log

that contains objects intermingled from multiple tablets. During normal operation, each

Bigtable server records update operations in a single commit log. Using a single log for all

the tablets on a single server improves the effectiveness of group commit, which reduces

disk seeks and improves throughput. During recovery, a failed server’s commit log is first

divided and cooperatively sorted by the cluster. This allows servers recovering a tablet to

read just the relevant entries of the failed server’s commit log with a single disk seek. Each

RAMCloud master similarly intermingles log records for all of its assigned tablets during

normal operation. Similar to Bigtable’s sort step, RAMCloud backups bucket objects in

each replica according to a partition scheme determined at the start of recovery; RAMCloud

performs this bucketing in-memory, whereas Bigtable sorts commit log data on disk.

7.2.4 Reconstruct Versus Reload

Metadata and indexing structures pose an interesting question for recovery systems; should

these structures be stored durably along with data and reloaded after a failure or is it bet-

ter reconstruct these structures from the stored data itself? For example, Bigtable stores

indexes explicitly on disk along with object data. Servers reload the indexes into DRAM

when they are assigned a tablet for recovery. In RAMCloud, a master’s index (that is,
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its hash table) is only stored in DRAM and is lost when the master crashes. Instead, re-

covery masters rebuild hash table entries, since replaying data already in DRAM is inex-

pensive. Rebuilding such indexes would be prohibitive in most disk-based systems like

Bigtable, since data left behind on storage is large (presumably, much larger than a ma-

chine’s DRAM) and is only read on demand.

This same question arises for replicated segment/chunk locations; should chunk loca-

tions be explicitly stored somewhere or is it better to broadcast and reconstruct the chunk

location mapping from responses? Bigtable and RAMCloud both reconstruct this map-

ping after failures. Bigtable uses GFS for durability. Similar to RAMCloud masters, each

filesystem “master” in GFS and HDFS only tracks chunk replica locations in DRAM, which

is lost when it crashes. When a new filesystem master is chosen, it rediscovers the replica

locations as chunk servers detect the old master’s failure and re-enlist with it. The RAM-

Cloud coordinator broadcasts during recovery for the same reason.

7.3 Log-structured Storage

RAMCloud’s log-structured approach to storage management is similar in many ways to

log-structured file systems (LFS) [42]. However, log management in RAMCloud is sim-

pler and more efficient than in LFS. RAMCloud is simpler because the log need not contain

metadata to enable random-access reads as in LFS. Instead, each master uses a hash table

to enable fast access to data in DRAM. During recovery, a master’s lost hash table is re-

constructed by replaying the entire log, rather than having the hash table explicitly stored

in the log. RAMCloud does not require checkpoints as in LFS, because it replays the en-

tire log during recovery. Log size is bounded by the DRAM capacity of a machine, which

indirectly bounds recovery time as well. RAMCloud is more efficient than LFS because it

need not read data from disk during cleaning: all live data is always in memory. The only

I/O during cleaning is to rewrite live data at the head of the log; as a result, RAMCloud

consumes less bandwidth for cleaning than LFS [43]. Cleaning cost was a controversial

topic for LFS; see [45], for example.
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7.4 Randomized Load Balancing

Mitzenmacher and others have studied the theoretical properties of randomization with re-

finement and have shown that it produces near-optimal results [2, 38]. RAMCloud uses

similar techniques in two places. First, the coordinator uses randomness with refinement to

achieve near-uniform partition balance across recovery masters. Second, masters randomly

scatter segment replicas across the disks of the cluster with a refinement that weights se-

lection according to storage bandwidth.
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Conclusion

This dissertation described and evaluated scalable fast crash recovery, which is key in pro-

viding durability and availability in the RAMCloud data center storage system. When

servers fail in RAMCloud, the work of recovery is split across all of the nodes of the clus-

ter in order to reconstitute the DRAM contents of the failed server as rapidly as possible.

By fully recovering the contents of a failed server in a few seconds, fast crash recovery pro-

vides an illusion of continuous availability; client applications see server failures as brief

storage system performance anomalies.

Several key techniques allow RAMCloud to recover quickly from failures while pro-

viding low-latency normal operation and cost-effective durability.

• Most importantly, it harnesses the large scale resources of data center clusters. When

a master fails in RAMCloud, data is read from thousands of disks in parallel and

processed by many recovery masters working in a tightly pipelined effort to reconsti-

tute the contents of the failed server. RAMCloud takes advantage of all of the CPUs,

NICs, and disks of the cluster to recover data as quickly as possible.

• It eliminates stragglers that limit recovery time by balancing the work of recovery

evenly across all of the machines of the cluster. No backup or recovery master is

saddled with a workload that takes significantly longer than the others.

• It avoids scalability-limiting centralization both during normal operation and during

121
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recovery. Each backup and each recovery master work independently without coor-

dination.

• It uses randomization techniques to allow localized decision making that results glob-

ally balanced work. In particular, it achieves improved balance for disk and log replay

work by using random choice with refinement.

• It uses log-structured storage techniques that provide durability while avoiding disk-

limited performance on the fast path.

Experiments show an 80-node cluster recovers 40 GB of data from a failed server in

1.86 seconds and that the approach scales to recover more data in the same time as cluster

size grows. Consequently, we expect a cluster of 120 machines can recover the entire

DRAM of a failed 64 GB node in 1 to 2 seconds.

Overall, RAMCloud’s scalable fast crash recovery makes it easy for applications to take

advantage of large scale DRAM-based storage by making the system failure transparent

while retaining its low latency access times. Fast crash recovery provides RAMCloud

with the reliability of today’s disk-based storage systems for the cost of today’s volatile

distributed DRAM caches with performance 50-5000× greater than either.

8.1 Future Directions for Fast Crash Recovery

In order for fast recovery to reconstitute the full DRAM of future data center servers, recov-

ery will need multicore and non-uniform memory access (NUMA) optimizations. Recent

CPU architectures have only seen modest gains in single core performance. Applications

now must intelligently divide work across cores and partition memory accesses among

core-specific memory controllers for the best performance. At the same time, per-server

DRAM capacity continues to grow, so for the same number of recovery masters to recover

larger servers data processing will have to be split across cores. It may be that work can

be divided in a rather coarse-grained way, with several rather independent recovery mas-

ters working within each server, or it may require more fine-grained optimization if, for

example, the single hash table and single in-memory log on each master is to be preserved.
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Improving per-server recovery performance alone will be insufficient to compensate

for the growth in per-server DRAM capacity. To retain fast recovery times in the future,

server communication overheads will have to be improved. Network latency is increas-

ingly dominated by speed-of-light delays, so the latency of network hardware is unlikely to

improve significantly in the future. This means recovery will need to restructure communi-

cation patterns to minimize network delays. As one example, the simple, iterative approach

to broadcast that the coordinator uses during recovery may need to be converted to use a

tree-like communication structure.

Using in-memory redundancy to avoid unavailability is not incompatible with fast re-

covery. One interesting direction for future work is to extend RAMCloud to support a

minimal amount of in-memory redundancy to avoid the 1 to 2 second availability gaps

caused by fast crash recovery. In such an approach, fast recovery would still be impor-

tant, since aggressively limiting redundancy would make the system more vulnerable to

availability gaps if failures occurred during recovery. Minimizing the capacity and perfor-

mance overhead of redundancy would be critical, but recent coding techniques like Local

Reconstruction Codes [24] achieve capacity overheads of 1.33× with an effect stronger

than triplicating data. Significant rework to how data is organized on masters would be

required to effectively take advantage of coding.

8.2 Lessons Learned About Research

From the outset, the goal of the RAMCloud project was to produce a usable and deployable

software artifact rather than just a research reference design. As a result, a large fraction of

student effort went into practical design, software engineering, documentation, and testing.

As of November 2013, RAMCloud had accumulated 50,000 lines of source C++ code with

an additional 35,000 lines of unit tests. Of the 85,000 lines about 30,000 were documenta-

tion and comments alone.

One key question raised by projects like RAMCloud is whether building polished soft-

ware projects is worth the time cost. Is it more important for a student to mature as an

engineer and to spend his efforts building systems, testing them, documenting them, sup-

porting them, and making them generally useful? Or is it more important for a student to



CHAPTER 8. CONCLUSION 124

mature creatively and to spend his efforts learning how to set and pursue a research agenda?

Or perhaps this is a false choice; perhaps one can optimize for both.

Personally, the major benefit from extensive engineering on RAMCloud is that I have

gained practical skill in building large-scale software and complex systems that work. Fur-

thermore, this experience has helped me realize that even the most challenging problems

can be tackled with a motivated and energetic team. Hopefully, this realization will encour-

age me to set into tough goals in the future. I certainly benefited greatly from collaborating

closely on a large project.

Even retrospectively, it is hard to draw conclusions about RAMCloud’s stringent devel-

opment style. In the future, I will encourage students to build software that they can take

pride in. At the same time, I believe a more lightweight approach to design and prototyping

could have been beneficial at certain points in the project. Allowing students to “hack up”

features could create energy behind new ideas and allow for fast exploration.

Developing RAMCloud was sometimes an arduous process. Three aspects of RAM-

Cloud’s recovery system made progress on developing it challenging; it is complex, dis-

tributed, and performance-sensitive. The combination of these three attributes meant re-

gressions were common yet hard to track down. RAMCloud’s recovery performance is

intricately dependent on nearly every subsystem, including the RPC system, the hash table,

the in-memory log, the distributed log replication system, the backup service, the I/O sub-

system, the task management and threading model, server status broadcasts, and the failure

detector. Even hardware was an adversary, with fans affecting disk performance, inexpli-

cable losses in I/O performance, and unreliable networking due to faulty NIC firmware

upgrades and PCI Express incompatibilities. Over the few years since recovery was proto-

typed, nearly every non-trivial change to any of RAMCloud’s subsystems has caused a

regression in either recovery performance or normal-case logging performance. Extending

the prototype to improve modularity and cover all of the practical failure cases that arise

in a real cluster was a slow process, requiring performance to be reconsidered at each step.

Over time, experience helped to mitigate some of this difficulty, but it is clear that despite

decades of systems research, building fast and reliable distributed systems is still an art.
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8.3 Final Comments

Scalable fast crash recovery is the cornerstone that makes RAMCloud a viable data center

storage system. It provides the durability, availability, and fault tolerance that make RAM-

Cloud practical and simple for developers to use. It makes RAMCloud cost effective by

eliminating the need for replication in DRAM. Finally, it does all this without impacting

normal-case performance, which is key to enabling new data center applications that can

interact with datasets more intensively than has been possible in the past.



Bibliography

[1] AGIGARAM. AgigA Tech AGIGARAM, October 2013. URL http://www.

agigatech.com/agigaram.php. 15

[2] Yossi Azar, Andrei Z. Broder, Anna R. Karlin, and Eli Upfal. Balanced allocations

(extended abstract). In Proceedings of the Twenty-Sixth Annual ACM Symposium on

Theory of Computing, STOC ’94, pages 593–602, New York, NY, USA, 1994. ACM.

ISBN 0-89791-663-8. 30, 120

[3] Mary Baker and John K. Ousterhout. Availability in the Sprite Distributed File Sys-

tem. Operating Systems Review, 25(2):95–98, 1991. 116

[4] Mary Baker, Satoshi Asami, Etienne Deprit, John Ousterhout, and Margo Seltzer.

Non-Volatile Memory for Fast, Reliable File Systems. In Proceedings of the Fifth

International Conference on Architectural Support for Programming Languages and

Operating Systems, ASPLOS V, pages 10–22, New York, NY, USA, 1992. ACM.

ISBN 0-89791-534-8. 116

[5] Mary Louise Gray Baker. Fast Crash Recovery in Distributed File Systems. PhD

thesis, University of California at Berkeley, Berkeley, CA, USA, 1994. 116

[6] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam

McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, Jaidev

Haridas, Chakravarthy Uddaraju, Hemal Khatri, Andrew Edwards, Vaman Bedekar,

Shane Mainali, Rafay Abbasi, Arpit Agarwal, Mian Fahim ul Haq, Muhammad

Ikram ul Haq, Deepali Bhardwaj, Sowmya Dayanand, Anitha Adusumilli, Marvin

McNett, Sriram Sankaran, Kavitha Manivannan, and Leonidas Rigas. Windows Azure

126

http://www.agigatech.com/agigaram.php
http://www.agigatech.com/agigaram.php


BIBLIOGRAPHY 127

Storage: A Highly Available Cloud Storage Service with Strong Consistency. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems Principles,

SOSP ’11, pages 143–157, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-

0977-6. 22, 117

[7] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

Distributed Storage System for Structured Data. In Proceedings of the 7th Sympo-

sium on Operating Systems Design and Implementation, OSDI ’06, pages 205–218,

Berkeley, CA, USA, 2006. USENIX Association. ISBN 1-931971-47-1. 114, 117

[8] Asaf Cidon, Stephen M. Rumble, Ryan Stutsman, Sachin Katti, John Ousterhout, and

Mendel Rosenblum. Copysets: Reducing the Frequency of Data Loss in Cloud Stor-

age. In Proceedings of the 2013 USENIX conference on Annual Technical Conference,

USENIX ATC’13, pages 37–48, Berkeley, CA, USA, 2013. USENIX Association. 31,

109

[9] Brian F. Cooper, Raghu Ramakrishnan, Utkarsh Srivastava, Adam Silberstein, Philip

Bohannon, Hans-Arno Jacobsen, Nick Puz, Daniel Weaver, and Ramana Yerneni.

PNUTS: Yahoo!’s Hosted Data Serving Platform. Proceedings of the VLDB Endow-

ment, 1:1277–1288, August 2008. ISSN 2150-8097. 112

[10] Jeffrey Dean. Evolution and Future Directions of Large-Scale Storage and Com-

putation Systems at Google. In Proceedings of the 1st ACM Symposium on Cloud

Computing, SoCC ’10, pages 1–1, New York, NY, USA, 2010. ACM. ISBN 978-1-

4503-0036-0. 109

[11] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati,

Avinash Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and

Werner Vogels. Dynamo: Amazon’s Highly Available Key-Value Store. In Pro-

ceedings of Twenty-First ACM SIGOPS Symposium on Operating Systems Principles,

SOSP ’07, pages 205–220, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-

591-5. 112



BIBLIOGRAPHY 128

[12] Peter J. Denning. The Working Set Model for Program Behavior. Communications

of the ACM, 11(5):323–333, May 1968. ISSN 0001-0782. 113

[13] David J. DeWitt, Randy H. Katz, Frank Olken, Leonard D. Shapiro, Michael R. Stone-

braker, and David A. Wood. Implementation Techniques For Main Memory Database

Systems. In Proceedings of the 1984 ACM SIGMOD International Conference on

Management of Data, SIGMOD ’84, pages 1–8, New York, NY, USA, 1984. ACM.

ISBN 0-89791-128-8. 115, 116

[14] Margaret H. Eich. Mars: The Design of a Main Memory Database Machine. In

Database Machines and Knowledge Base Machines, volume 43 of The Kluwer Inter-

national Series in Engineering and Computer Science, pages 325–338. Springer US,

1988. ISBN 978-1-4612-8948-7. 116

[15] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh

Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availability in Globally

Distributed Storage Systems. In Remzi H. Arpaci-Dusseau and Brad Chen, editors,

OSDI, pages 61–74. USENIX Association, 2010. ISBN 978-1-931971-79-9. 108,

109

[16] Hector Garcia-Molina and Kenneth Salem. Main Memory Database Systems: An

Overview. IEEE Transactions on Knowledge and Data Engineering, 4:509–516, De-

cember 1992. ISSN 1041-4347. 115, 116, 117

[17] Dieter Gawlick and David Kinkade. Varieties of Concurrency Control in IMS/VS

Fast Path. IEEE Database Engineering Bulletin, 8(2):3–10, 1985. 115

[18] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google File System.

In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles,

SOSP ’03, pages 29–43, New York, NY, USA, 2003. ACM. ISBN 1-58113-757-5.

107, 108, 117

[19] Robert Hagmann. Reimplementing the Cedar File System Using Logging and Group

Commit. In Proceedings of the Eleventh ACM Symposium on Operating Systems



BIBLIOGRAPHY 129

Principles, SOSP ’87, pages 155–162, New York, NY, USA, 1987. ACM. ISBN

0-89791-242-X. 115

[20] John H. Hartman and John K. Ousterhout. The Zebra Striped Network File System.

In Proceedings of the Fourteenth ACM Symposium on Operating Systems Principles,

SOSP ’93, pages 29–43, New York, NY, USA, 1993. ACM. ISBN 0-89791-632-8.

117

[21] HBase. Hbase, October 2013. http://hbase.apache.org/. 117

[22] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: A Correctness Condition

for Concurrent Objects. ACM Transactions on Programming Languages and Systems,

12:463–492, July 1990. ISSN 0164-0925. 73

[23] Andy Hisgen, Andrew Birrell, Timothy Mann, Michael D. Schroeder, and Garret

Swart. Availability and Consistency Tradeoffs in the Echo Distributed File System.

In Proceedings of the 2nd IEEE Workshop on Workstation Operating Systems, pages

49–54, 1989. 113

[24] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parikshit

Gopalan, Jin Li, and Sergey Yekhanin. Erasure Coding in Windows Azure Storage. In

Proceedings of the 2012 USENIX Annual Technical Conference, USENIX ATC’12,

pages 15–26, Berkeley, CA, USA, 2012. USENIX Association. 123

[25] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. ZooKeeper:

Wait-free coordination for Internet-scale systems. In Proceedings of the 2010

USENIX Annual Technical Conference, USENIX ATC ’10, pages 145–158, Berke-

ley, CA, USA, 2010. USENIX Association. 13, 71, 75

[26] Robert Johnson. More Details on Today’s Outage - Facebook, September 2010. URL

http://www.facebook.com/note.php?note_id=431441338919. 114

[27] Robert Johnson and J. Rothschild. Personal Communications, March 24 and August

20, 2009. 1

http://hbase.apache.org/
http://www.facebook.com/note.php?note_id=431441338919


BIBLIOGRAPHY 130

[28] Robert Kallman, Hideaki Kimura, Jonathan Natkins, Andrew Pavlo, Alexander Rasin,

Stanley Zdonik, Evan P. C. Jones, Samuel Madden, Michael Stonebraker, Yang

Zhang, John Hugg, and Daniel J. Abadi. H-store: A High-Performance, Distributed

Main Memory Transaction Processing System. Proceedings of the VLDB Endowment,

1:1496–1499, August 2008. ISSN 2150-8097. 115

[29] Michael L. Kazar, Bruce W. Leverett, Owen T. Anderson, Vasilis Apostolides, Beth A.

Bottos, Sailesh Chutani, Craig Everhart, W. Anthony Mason, Shu-Tsui Tu, and Ed-

ward R. Zayas. DEcorum File System Architectural Overview. In Proceedings of the

Summer 1990 USENIX Conference, pages 151–164, 1990. 113

[30] Avinash Lakshman and Prashant Malik. Cassandra: A Decentralized Structured Stor-

age System. ACM SIGOPS Operating Systems Review, 44(2):35–40, April 2010.

ISSN 0163-5980. 112

[31] Tobin J. Lehman and Michael J. Carey. Query Processing in Main Memory Database

Management Systems. In Proceedings of the 1986 ACM SIGMOD International Con-

ference on Management of Data, SIGMOD ’86, pages 239–250, New York, NY, USA,

1986. ACM. ISBN 0-89791-191-1. 116

[32] Charles E. Leiserson. Fat-Trees: Universal Networks for Hardware-Efficient Super-

computing. IEEE Transactions on Computers, 34(10):892–901, October 1985. ISSN

0018-9340. 80

[33] Kai Li and Jeffrey F. Naughton. Multiprocessor Main Memory Transaction Process-

ing. In Proceedings of the First International Symposium on Databases in Parallel

and Distributed Systems, DPDS ’88, pages 177–187, Los Alamitos, CA, USA, 1988.

IEEE Computer Society Press. ISBN 0-8186-0893-5. 115

[34] Bill Lynn and Ansh Gupta. Non-Volatile CACHE for Host-

Based RAID Controllers, January 2011. URL http://www.

dell.com/downloads/global/products/pvaul/en/

NV-Cache-for-Host-Based-RAID-Controllers.pdf. 15

http://www.dell.com/downloads/global/products/pvaul/en/NV-Cache-for-Host-Based-RAID-Controllers.pdf
http://www.dell.com/downloads/global/products/pvaul/en/NV-Cache-for-Host-Based-RAID-Controllers.pdf
http://www.dell.com/downloads/global/products/pvaul/en/NV-Cache-for-Host-Based-RAID-Controllers.pdf


BIBLIOGRAPHY 131

[35] Krishna T. Malladi, Benjamin C. Lee, Frank A. Nothaft, Christos Kozyrakis, Karthika

Periyathambi, and Mark Horowitz. Towards Energy-proportional Datacenter Mem-

ory with Mobile DRAM. In Proceedings of the 39th International Symposium on

Computer Architecture, pages 37–48. IEEE Press, 2012. 7

[36] Timothy Mann, Andrew Birrell, Andy Hisgen, Charles Jerian, and Garret Swart. A

Coherent Distributed File Cache with Directory Write-Behind. ACM Transactions on

Computer Systems, 12(2):123–164, 1994.

[37] memcached. memcached: a distributed memory object caching system, October

2013. http://www.memcached.org/. 1, 113

[38] Michael David Mitzenmacher. The Power of Two Choices in Randomized Load Bal-

ancing. PhD thesis, University of California at Berkeley, Berkeley, CA, USA, 1996.

30, 120

[39] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee,

Harry C. Li, Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, et al. Scaling

Memcache at Facebook. In Proceedings of the 10th USENIX Conference on Net-

worked Systems Design and Implementation, pages 385–398. USENIX Association,

2013. 113, 114

[40] John Ousterhout, Parag Agrawal, David Erickson, Christos Kozyrakis, Jacob Lev-

erich, David Mazières, Subhasish Mitra, Aravind Narayanan, Diego Ongaro, Guru

Parulkar, Mendel Rosenblum, Stephen M. Rumble, Eric Stratmann, and Ryan

Stutsman. The Case for RAMCloud. Communications of the ACM, 54:121–130,

July 2011. ISSN 0001-0782. 6, 11

[41] John K. Ousterhout, Andrew R. Cherenson, Frederick Douglis, Michael N. Nelson,

and Brent B. Welch. The Sprite Network Operating System. IEEE Computer, 21:

23–36, February 1988. ISSN 0018-9162. 113

[42] Mendel Rosenblum and John K. Ousterhout. The Design and Implementation of a

Log-Structured File System. ACM Transactions on Computer Systems, 10:26–52,

February 1992. ISSN 0734-2071. 4, 16, 43, 119

http://www.memcached.org/


BIBLIOGRAPHY 132

[43] Stephen Mathew Rumble. Memory and Object Management in RAMCloud. PhD

thesis, Stanford University, Stanford, CA, USA, 2014. 16, 44, 119

[44] Pierluigi Sarti. Battery Cabinet Hardware V1.0, July 2011. URL http://

www.opencompute.org/wp/wp-content/uploads/2011/07/

DataCenter-Battery-Cabinet-Specifications.pdf. 14, 15,

25

[45] Margo Seltzer, Keith A. Smith, Hari Balakrishnan, Jacqueline Chang, Sara McMains,

and Venkata Padmanabhan. File System Logging Versus Clustering: A Performance

Comparison. In Proceedings of the USENIX 1995 Technical Conference, TCON’95,

pages 249–264, Berkeley, CA, USA, 1995. USENIX Association. 119

[46] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The

Hadoop Distributed File System. In Proceedings of the 2010 IEEE 26th Symposium

on Mass Storage Systems and Technologies, MSST ’10, pages 1–10, Washington, DC,

USA, 2010. IEEE Computer Society. ISBN 978-1-4244-7152-2. 31, 109, 117

[47] V. Srinivasan and Jeffrey C. Mogul. Spritely NFS: Experiments with Cache-

Consistency Protocols. In Proceedings of the Twelfth ACM Symposium on Operating

Systems Principles, SOSP ’89, pages 44–57, New York, NY, USA, 1989. ACM. ISBN

0-89791-338-8. 113

http://www.opencompute.org/wp/wp-content/uploads/2011/07/DataCenter-Battery-Cabinet-Specifications.pdf
http://www.opencompute.org/wp/wp-content/uploads/2011/07/DataCenter-Battery-Cabinet-Specifications.pdf
http://www.opencompute.org/wp/wp-content/uploads/2011/07/DataCenter-Battery-Cabinet-Specifications.pdf

	Abstract
	Acknowledgements
	Introduction
	Dissertation Contributions

	Motivation
	RAMCloud Overview
	Basics
	Data Model
	System Structure
	The Coordinator
	Tablets

	Durability and Availability
	Log-Structured Storage
	Recovery
	Using Scale


	Fault-tolerant Decentralized Logs
	Log Operations
	Appending Log Data
	Scattering Segment Replicas
	Log Reassembly During Recovery
	Finding Log Segment Replicas
	Detecting Incomplete Logs

	Repairing Logs After Failures
	Recreating Lost Replicas
	Atomic Replication
	Lost Head Segment Replicas
	Preventing Inconsistencies Due to Overloaded Backups
	Replica Corruption

	Reclaiming Replica Storage
	Discarding Replicas After Master Recovery
	Redundant Replicas Found on Storage During Startup

	Summary

	Master Recovery
	Recovery Overview
	Failure Detection
	Setup
	Finding Log Segment Replicas
	Detecting Incomplete Logs
	Grouping Tablets Into Partitions
	Assigning Partitions to Recovery Masters

	Replay
	Partitioning Log Entries on Backups
	Segment Replay Order

	Cleanup
	Coordinating Recoveries
	Multiple Failures
	Failures During Recovery
	Cold Start

	Zombie Servers
	Summary

	Evaluation
	Experimental Configuration
	How Large Should Segments Be?
	How Large Should Partitions Be?
	How Well Does Recovery Scale?
	Bottlenecks in the Experimental Configuration
	Recovery Coordination Overhead

	The Limits of Fast Crash Recovery
	Scaling Up
	Scaling Down
	What Is the Fastest Possible Recovery?

	How Well Does Segment Scattering Work?
	Impact of Fast Crash Recovery on Data Loss
	Vulnerability to Correlated Failures

	Summary

	Related Work
	DRAM in Storage Systems
	Caching
	Application-Specific Approaches
	In-memory Databases

	Crash Recovery
	Fast Crash Recovery
	Striping/Chunk Scattering
	Partitioned Recovery
	Reconstruct Versus Reload

	Log-structured Storage
	Randomized Load Balancing

	Conclusion
	Future Directions for Fast Crash Recovery
	Lessons Learned About Research
	Final Comments


