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Abstract—We design and build FEAT, a new scaling approach
that uses (1) cloud functions as interim processing resources to
compensate for VM launch delays and (2) a reactive, knobless,
auto-scaling algorithm that requires no pre-specified thresholds or
parameters, making it robust against changing load. We imple-
ment FEAT on Amazon Web Services (AWS) and Microsoft Azure.
Our evaluations clearly demonstrate the higher performance and
robustness of FEAT in comparison to existing approaches.

I. INTRODUCTION

A tenant buys services from a public cloud provider to

host applications on virtual machines (VMs). The tenant sells

services of the applications to its clients. Cloud providers offer

the tenant the ability to automatically scale (auto-scale) appli-

cations to meet ever-changing processing demands.1 However,

two critical problems must be addressed to effectively auto-

scale resources. First, VMs can take tens of seconds or even

minutes to launch [16], and more time is needed to load the

application on the VM. During this time, demand on the exist-

ing VMs can exceed capacity, resulting in increased response

times. Second, determination of the processing power to add or

remove is tricky as application load can vary unpredictably over

different time scales. In existing scaling approaches, tenants

must pre-specify thresholds to cloud providers to trigger scaling

operations, but these thresholds are not robust against changing

load demands. We design and build a novel scaling approach,

FEAT (Fast launch Event-driven Auto-Tuning) that uses (1)

cloud functions (CFs) available at cloud providers as interim

resources to deal with the delay in launching VMs and (2) a

reactive, knobless, auto-scaling algorithm that does not require

any pre-specified thresholds, making it robust against changing

load. Further, shifting workload between CFs and VMs may

lead to a new programming paradigm to take advantage of the

unique characteristics of the respective computing resources.

Provisioning compute in cloud services is undergoing a

transition as developers begin to deeply incorporate CFs into

their applications. All major cloud providers now offer CFs,

including Amazon Web Services (AWS) Lambda [1], Microsoft

Azure Functions [17], and IBM OpenWhisk [11]. Tenants

benefit from CFs, since they provide low-latency launch times

and are inexpensive for short-lived requests. Cloud providers

benefit, since CFs are generally small, short, and stateless,

which eases resource scheduling and reduces idle capacity.

However, CFs have two serious drawbacks compared to VMs.

1Horizontal scaling adds/removes VMs (scale out/scale in). Vertical (scale

up/scale down) adds/removes resources. We use scale in and scale out for both.

First, they break the classic OS process abstraction, so applica-

tions must be reworked to take advantage of them. Second, their

pricing model differs from VMs; certain lightweight workloads

are more cost effective when run with CFs, whereas heavier

workloads that can amortize costs are significantly more cost

effective on VMs. This leaves developers with hard choices.

For certain operating points, CFs are cost effective and scale

more rapidly; for other workloads VMs are cheaper. Worse,

developers cannot fluidly trade between these resources as their

workload shifts and scales. FEAT uses heavy CFs that adapt

CFs to work with applications developed for conventional VMs

without requiring code changes, and a knobless reactive scaling

algorithm that employs these heavy CFs to cut costs. At a

high level, FEAT keeps a pool of CFs to temporarily service

requests when load grows and allocates them based on changes

in queuing delay. To keep CF costs from growing, it allocates

VMs and shifts load to the VMs as they slowly come online, at

which point CFs are idled. An idle CF is about 100× cheaper

than an idle VM (§IV), and given that these CFs eliminate VM

over-provisioning for scale out, the savings are significant.

Despite differences in programming model, providers’ iso-

lation of CFs is not fundamentally different from more con-

ventional approaches, so heavy CFs can be implemented atop

existing cloud provider CF offerings. We implement and evalu-

ate heavy CFs as part of FEAT on both AWS and Azure. FEAT

not only improves cost savings over state-of-the-art auto-scaling

approaches, but also significantly simplifies development and

operational management of applications. Developers need not

write code specialized for VMs or CFs; both run conventional

application code designed for ordinary VM deployment. Devel-

opers also need not pre-specify any parameters or thresholds;

FEAT automatically provisions CFs and VMs to adapt to

changing load while minimizing cost.

We demonstrate FEAT’s promise with two common

classes of cloud applications: publisher/subscriber and

request/response-based applications. Importantly, we compare

FEAT against state-of-the-art auto-scaling frameworks

(including combined predictive, reactive, and machine

learning-based approaches) and show its simple, knobless,

reactive approach supported by CFs reduces tenant-observed

queuing delay by 40% in our experiments. Interestingly, even

state-of-the-art baseline approaches can be improved with

FEAT’s heavy CFs. FEAT is the first approach using CFs with

conventional application code to quickly add processing power

when scaling out. Evaluating our implementation on AWS and



Azure with both synthetic data sets and real-world network

traces, we make the following significant observations:

• FEAT’s CFs reduce latency up to 2× compared to approaches

that do not use CFs, even under 10× change in offered load.

It reduces core count over cloud provider scaling by 15-20%.

• FEAT’s parameterless approach reduces queuing delay over

existing approaches that require tenants to pre-specify thresh-

olds by 5× and existing state-of-the-art approaches by 40%.

• We find AWS has faster VM launch times and less restric-

tive security in the CF execution environment than Azure.

Consequently, our CF method has greater benefit on Azure.

• We find that without CFs, horizontal scaling can attain about

25% lower queuing delay than vertical scaling. Our use of

CFs tends to equalize the two.

We build a discrete event simulator to examine the stability

of FEAT. We find that FEAT maintains a stable queuing delay

in all cases that we study. In summary, we present a new

cloud resource scaling architecture and implement it on two

cloud provider platforms. Our evaluation shows FEAT’s higher

performance and robustness compared to existing approaches.

II. RELATED WORK

Since major cloud providers began offering CFs or “lamb-

das,” researchers have been investigating these platforms them-

selves [9] as well as CF-based applications. Commonly, CFs

are used for distributed systems like compute platforms [13] or

message brokers [18]. FEAT’s use of CFs to temporarily absorb

increases in load is new, but others have used them to run

specific user-level executables; for example, distributed video

processing [6], firewalls and intrusion detection [20]. Reactive

load control auto-scaling models scale in response to quantities

measured in real time such as CPU utilization or request rate.

Predictive models use past workload training sets in machine

learning (ML) to attempt to predict future resource demands.

Hybrid models combine these approaches. Unlike our approach,

most require pre-specification of parameters and thresholds.

Reactive: Cloud providers offer rule-based auto-scaling.

When a metric such as CPU utilization exceeds a threshold, a

tenant-defined rule fires to add VMs. We compare FEAT with

this baseline algorithm as well as a hybrid approach, described

below. Gandhi et al. [7] concentrate requests to a set of servers.

They use idle timers to determine when to scale in remaining

servers. They infer the capacity of a VM and measure workload

to scale out. Lim et al. implement feedback controllers that

track CPU utilization [14] and target storage tiers [15].

Predictive: Tesauro et al. [21] use reinforcement learning

to provision, but it must be trained offline, since training is

costly. Nguyen et al. [19] use wavelets to determine resource

demand. They clone VMs to mitigate launch delays. We use

CFs to handle additional load until VMs have launched.

Hybrid: Wang et al. [24] combine reactive, predictive, and

feedback control. Their system uses arrival rate to predict the

number of cores and fine-tunes them with a latency feedback

signal. We implement this existing state-of-the-art algorithm for

comparison in our evaluation. The reactive component of Jiang

et al. [12] triggers when the request queue exceeds a threshold.

It solves a cost/latency trade-off optimization with exhaustive

search that does not necessarily scale. Parameters of the reactive

component of Urgaonkar et al. [22] include the quantity of work

performed per request and an execution frequency.

III. SCALING ARCHITECTURE

A major issue with scaling VMs is that they are slow to

launch, on the order of minutes [16]. One way to deal with this

is to keep spare VMs idle, but this is expensive and inefficient.

Providers charge for VM run time whether it is performing

useful work or sitting idle. Further, it is difficult to predict how

many spare VMs will be required. On the other hand, CFs

have fast sub-second launch times and are inexpensive to idle.

Providers charge CFs by the request and not for idle time. It

costs a tenant two orders of magnitude more to idle a spare

VM compared to a similarly provisioned CF.

CFs have been more resource limited than VMs, but trends

are driving them closer to one another. The memory-to-core

ratio in a VM is typically between 2 to 4 GB/core. CFs are

quickly approaching this ratio. AWS recently [2] doubled the

available CF memory from 1.5 GB to 3 GB. We suspect

this trend will continue with increasing demand for CFs and

from competition between cloud providers, allowing CFs to run

heavier workloads. We demonstrate that CFs are now able to

run heavy workloads similar to VMs in our evaluation.
Using CFs with VMs: We create a system that allows

sub-second launch of long-running processes. To achieve this,

we implement the system shown in Figure 1a, consisting of

cloud provided VMs and CFs plus a computer running our

controller. AWS and Azure provide proprietary scaling of CFs;

however, we control CF scaling directly to perform CF-to-VM

hand-off. At startup, the controller creates a pool of CFs and

loads applications on them. When the controller scales out, it

determines the number of required VMs and the number of

cores on each VM. It selects an idle CF from the pool and

associates it with a core. The controller simultaneously starts

the VM and instructs the CF to resume processing. The CF

begins processing requests immediately and the VM continues

to launch. When the VM is ready, the controller suspends the

CF and returns it to the pool. When a CF is idle, the provider

may swap it out of cache. Launching a CF swapped out of cache

is a cold start; launching a cached CF results in a warm start.

To minimize cold starts, the controller makes periodic requests

to the CF [10]. This could be costly to the cloud provider if

this technique were widely used, but each tenant needs very

few warm CFs to mitigate VM launch latency. Regardless, our

technique provides significant improvement since both warm

and cold start CFs have significantly lower launch times than

VMs. Cloud providers limit the amount of time a CF can pro-

cess a single request. The maximum processing time can exceed

the time it takes for a VM to launch. The controller continually

makes sequential requests to the CF until its corresponding VM

has launched, allowing the CF to run continuously until the

VM is ready. AWS and Azure provide runtimes for languages

including Java, JavaScript/NodeJS, and C#. It is possible to

execute pre-compiled executables independent of the runtimes
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Fig. 1: Scaling System

on a CF [6], [20], [23] as described in §V. Cloud providers

set limits on the number of VM cores a tenant may allocate

simultaneously. We use a CF pool size equal to our core limit.

Model: We use the queuing model shown in Fig-

ure 1b which allows us to implement both publisher/subscriber

(pub/sub) and request/response (req/resp) applications. It con-

sists of client producers that generate jobs/requests, a queue

to hold pending jobs/requests, and server consumers to process

them. Our pub/sub implementation uses an explicit work queue

to hold pending jobs. This implementation can be used for a

wide range of applications such as back-end batch processors

or IoT systems. Moreover, the queue need not be explicit. In

our req/resp implementation, the queue consists of the TCP

backlog and receive queues in a custom HTTP load balancer

that we build. This implementation can be used for web or

machine-to-machine (M2M) applications.

FEAT Scaling Algorithm: In state-of-the-industry scaling,

tenants must specify rules on the provider’s platform. Tenants

define thresholds such as CPU utilization that trigger the rules.

Tenants also specify how many cores to add or remove when

the rule fires. Setting these values requires analyzing the system

behavior in response to load patterns. When load patterns

change, they may no longer be valid. We use first principles

to develop a reactive algorithm that requires no pre-tuning, but

quickly adapts to changing network conditions using runtime

measurements. Our simple approach outperforms existing state-

of-the-art approaches while eliminating the need to pre-specify

thresholds which is a primary difficulty in other approaches.

Our algorithm (Algorithm 1) makes scaling decisions based

on runtime measurements of the queue. It can execute at any

frequency (§VII), but it is convenient to execute it in an

event-driven manner whenever the cloud provider makes new

measurements such as queuing delay available.

Scaling Out: Our scale out algorithm depends only on

runtime measurements of arrival rate λ (offered load), queue

growth rate g, and departure rate. Let c0 be the number of

cores before scaling and c1 be the number after. The required

number of cores to process the current load is λ/µ where µ
is the processing rate per core. If a queue has formed before

we can add cores, this ratio is insufficient to drain the queue.

Our intuition is to include g to collapse the queue to zero delay

over the next interval. The required cores c1 is the arrival rate

plus the queue growth rate divided by the processing rate per

core as shown in Equation 1. When scaling horizontally and

vertically, we give preference to launching VMs with the largest

Algorithm 1 FEAT Scaling Algorithm

c0 = current number of cores

c1 = new number of cores

t = time since last iteration

d = measured change in queuing delay

g = measured queue growth rate in jobs/sec

λ = measured job arrivals/sec

x = measured job departures/sec

µ = x/c0 = departure rate per core

k = (λ+ g)/µ = required capacity

α1 = jobs processed in current iteration

n = jobs processed in previous iteration

Ji = time to process job i in previous iteration

α0 = nt/(
∑n

i=1
Ji) = predicted opportunities

h = α1/α0 = predicted capacity

if (d > 0) { // queue is growing, scale out

if (k < h) {
// Measured capacity < predicted but

// queue is growing. Invalid

// measurement or change in traffic.

// Wait for more measurements.

c1 = c0
} else { c1 = ⌈ 1

µ
(λ+ g)⌉) } // Equation 1

} else { // queue is not growing, scale in

if (1 < h) {
// Queue is not growing but prediction

// indicates scale out. Wait for more

// measurements, do not scale.

c1 = c0
} else { c1 = ⌈α1

α0
c0⌉ } } // Equation 2

return (c1)

core count available, not exceeding those remaining to launch.

c1 = ⌈
λ+ g

µ
⌉ (1)

Scaling In: Scaling in is more difficult since we need

to detect spare capacity in the system. Our intuition is that

if the measured processing rate in two consecutive intervals

is decreasing, less capacity is required and we scale in. We

measure the number of jobs, n, processed in the first interval

and the time it takes to process the jobs,
∑n

i=1 Ji where Ji is

the time it takes to process job i. The number of opportunities

available to process jobs is α0 = (n/
∑n

i=1 Ji)t where t is the

time since the last iteration. We then measure the number of

jobs α1 processed in the second interval. The ratio h = α1/α0
gives the required decrease in capacity. The new number of

cores is given by Equation 2.

c1 = ⌈
α1
α0

c0⌉ (2)

Combined Scaling: If the queuing delay increases, we

scale out according to Equation 1. If the queuing delay does not

increase, we scale in according to Equation 2. When scaling

out, we verify the required capacity is greater than the predicted

capacity. We do this to check our measurements which can

be in error because of timing or high variability in offered

load. If we detect an error (k < h), we do not scale, but

collect more measurements over the next interval. When scaling



in, our prediction can be in error when load patterns change.

Before scaling in, we verify the ratio h = α1/α0 is less than

1, indicating we have excess processing opportunities.

IV. COST ANALYSIS

FEAT saves costs in two ways from a tenant’s perspective.

One depends on the provider’s CF and VM cost structure. The

other is in terms of latency violations.

Provider-Dependent: We acknowledge that the costs in

this subsection will vary as providers change their pricing

model. However, it is likely that CFs will continue to be less

expensive over short durations than VMs for both the provider

and tenant because CFs are implemented with containers that

have less fragmentation than VMs and can share physical

resources more efficiently than a VM. Cloud providers price

CFs differently than VMs. VMs are intended to run for long

periods of time and AWS and Azure bill by execution time.

CFs are intended to handle a large volume of requests and

AWS and Azure bill in terms of number of req/month and the

amount of memory used during each request. FEAT incurs cost

only while launching a VM or keeping a CF warm. It uses few

req/month so memory is the dominant cost. Our system keeps a

CF warmed by making short running requests every 5 minutes.

These short running requests last less than 1 second in duration,

but we round up to 1 second here to simplify the analysis.

Let C be the number of CFs in the pool. Let V be the number

of VMs added/month. Let A be the cost/req and B be the cost

per GB-sec. Total cost per month is (Creq+Vreq)A+(Cmem+
Vmem)B where Creq is the number of req/month to keep the CF

warm, Vreq is the number of req/month to launch a VM, Cmem

is the amount of memory/month to keep the CF warm, and

Vmem is the amount of memory/month to launch a VM. While

a VM is initializing, we make requests at a rate of 1 req/min

(the provider’s measurement frequency) to keep the application

executing on the CF. When the VM is running, we allow the CF

to return to an idle but warmed state. At the time of this writing,

A = $2 × 10−7 and B = $1.667 × 10−5 for both AWS and

Azure. If it takes 2 min to launch a VM and 3 GB RAM/CF

(the worst case on AWS), then we have Creq = 8, 760 C,

Vreq = 2 V , Cmem = 26, 280 C, and Vmem = 360 V .

Figure 2 shows the cost for a range of CFs and VMs.

Concretely, the cost of running a spare idle VM with 1 CPU

and 3 GB RAM for a month is about $50; whereas, the cost of

keeping a similarly provisioned CF warm for a month is about

$0.50. It is two orders of magnitude less expensive for a tenant

to keep a CF ready to process requests than an idle VM.

Provider-Independent: We now present our model for the

cost savings during a scale out event. This model is independent

of the cost structure of the provider. For this model, we assume

latency is caused by queuing delay. Let Γ be a target latency. If

mean queuing delay γ is greater than Γ during a time interval

δ, we apply a cost penalty of β to the tenant’s utility U [24].

The cost P of the request due to the penalty is P = β γ
Γ
U .

Consider an offered load increase from λ0 to λ1 jobs/sec.

Figure 3a shows the time line of a scale out event. At time t0,

the system is running with c0 VMs and the controller makes
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a scaling decision. The dotted line shows the time line if the

system uses CFs and the solid line without them. Time tCF

is the time at which the CFs become ready if the system is

using them. Latency stops growing at tCF if CFs are being

used. Time t1 is the time at which the newly launched VMs

become ready. The queuing delay increases during the time

from t0 until the CFs or VMs become ready. Figure 3b shows

the time series of the increase in delay during the scaling event.

While the expected value of queuing delay grows exponentially

with utilization, the time series growth is linear [8]. At some

time tΓ, the queuing delay becomes greater than the target Γ.

Latency violations occur in the shaded area of the figure. The

total penalty is the sum of the penalties in each δ.

We use constant values of λ0 and λ1 in the figures to

illustrate our point; however, in a real system, the arrival rate

will vary over time. To compute the penalty at runtime, a real

system cannot simply compute the area of the shaded portion

of Figure 3b. We compute the total penalty Ptotal at runtime

by summing the penalties at the end of each interval δ. There

are t1−tΓ
δ

intervals between tΓ and t1. Let γi be the measured

average latency between times tΓ+(i− 1)δ and tΓ+ iδ where

i is the interval number, then we have Ptotal =
∑ t1−tΓ

δ

i=1 β γi

Γ
U .

Figure 4 shows a sample cost savings as a function of the

increase in offered load. Let PCF be the penalty when using

CFs and PVM be the penalty when not using them. The cost

savings is ∆P = PVM−PCF . For this example, we use values

on on the order of those in our evaluation.

Key observations: There is a fundamental cost advantage

to decreasing the effective launch time of a VM. As a contin-

uous function, the savings is an integral of a linear equation
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describing the increase in latency in Figure 3b. This manifests

as a parabola in Figure 4. Consequently, there is higher cost

savings for larger increases in offered load.

V. IMPLEMENTATION

We implement FEAT and three other approaches for com-

parison: (1) a constant number of cores (CONST), (2) a pre-

tuned CPU utilization-based algorithm (MAN), and (3) a state-

of-the-art hybrid algorithm [24] (FINE). CONST represents a

statically-provisioned production system from which we obtain

network traces in our evaluation. MAN is a manually pre-

tuned state-of-the-industry algorithm available from most cloud

providers. FINE is an existing state-of-the-art algorithm using a

hybrid of predictive, reactive, and feedback control techniques.

We implement a scalable pub/sub and a load balanced req/resp

web server farm. We write custom producer, consumer, and

controller applications in Java except for the Azure CF shell

which we write in C#. The two systems are similar in structure

with details below. On AWS, we use EC2 (for VMs) and

Lambda (AWS’s CFs). On Azure, we use the Virtual Machines

and Functions offerings. The producer reads and recreates a pre-

recorded network trace. It creates jobs (for pub/sub) or requests

(for req/resp) and sends them to the job queue or load balancer.

Publisher/Subscriber: We use Apache ActiveMQ [3] for

our job queue. The producers (publishers) send the job data to

the work queue. The consumers (subscribers) pull jobs from

the queue on a first-come-first-served basis. A consumer uses

CPU resources proportional to the job size.

Web Server: For this application, the producers are HTTP

clients. They make requests to a custom load balancer that we

write. The load balancer proxies requests to Apache HTTP [4]

running on the VMs and CFs. Apache HTTP proxies the request

to the consumer on the same VM or CF. The consumer returns

the response which follows the reverse path back to the client.

The queue consists of the TCP backlog and receive queues in

the load balancer. We set the backlog and timeouts high enough

that no requests are dropped to avoid reducing to tail drop.

AWS Lambdas are preloaded with Java, JavaScript/NodeJS,

Python, and C# runtimes on an Amazon Linux OS. Azure Func-

tions are preloaded with C#, F#, JavaScript/NodeJS, Python

and PHP runtimes on the Windows Server 2012 Datacenter

OS. Programmers write code for any of these runtimes with

an SDK from the provider and upload it to the provider’s CF

system. A CF will run any code that compiles to a user-level

executable [6], [23]. We regard our CF as a shell that interfaces

to the underlying OS. We execute and control our consumer and

Apache HTTP which do not depend on the supported runtimes.

We write our shells in Java on AWS and in C# on Azure. We

write our consumer in Java. Apache HTTP is written in C.

The CFs resume from a paused state in 20-40 sec on AWS

and 40-50 sec on Azure. The VMs launch and start our

applications on AWS in 2-3 min and 4-5 min on Azure. Azure

queuing delays grow more than AWS before VMs are fully

launched. As a result, Azure benefits more from CFs than AWS.

VI. EVALUATION

We first evaluate the algorithms with a synthetic data set

without CF fast launch to establish a baseline. Next, we add

fast launch to show the improvement from decrease in effective

launch times. Finally, we evaluate them on a network trace

from a statically and over-provisioned production web server

to determine how robust they are in a real-world environment.

We summarize mean results in Tables I and II. Note that the

results for all algorithms show an average queuing delay an

order of magnitude larger than typical service level agreements

(SLAs) [5]. In a real-world web server, when the TCP request

rate exceeds capacity, the backlog fills and the server drops

arriving TCP connections. The queuing delay will not grow

very large. In our pub/sub application, we use an explicit queue

to hold pending jobs and in our web server application, we

set the TCP backlog to a very high value to evaluate the

system without resorting to tail drop. We do not discard any

requests. Consequently, queuing delay can grow large and stay

at elevated levels until we add capacity to the system.

CONST, MAN, and FINE require pre-tuning to the network.

Fast launch has no significant effect on CONST because its

VMs are always running. FEAT does not require pre-tuning.
FINE: FINE trains an autoregressive AR(2) predictor

ahead of time on pre-recorded traces to predict arrival rate [24].

It pre-computes a lookup table that maps arrival rate to the

core count required to service that rate. At runtime, it looks

up the predicted rate to obtain the core count. It uses latency

as a feedback signal to fine-tune the core count to achieve

a target latency. One issue we encounter while pre-tuning

FINE is that pre-computing the core count does not always

give an appropriate computing capacity because workloads

vary over time. The feedback signal fine-tunes the capacity

but introduces feedback delay. Another issue is pre-tuning the

feedback gain. At high gain, the core count far exceeds a

provider-imposed core quota. In spite of our best effort, the core

count occasionally exceeds the quota during the evaluations.

We limit the core count to the quota in this case. We use the

algorithm’s default 0.6 ms target latency and a gain of 10−5.
MAN: If the average CPU utilization exceeds an upper

threshold, MAN scales out by a pre-tuned number of cores. If

it drops below a lower threshold, MAN scales in by another pre-

tuned number of cores. We find that an upper threshold of 40%

and a lower threshold of 20% work well in our environment.



TABLE I: Synthetic Summary. Pub/sub is listed on the left side of each column, req/resp on the right.

Experi-
ment

Scaling
Algo-
rightm

Queuing Delay (sec) Number of Cores CPU (%)
AWS Azure AWS Azure AWS Azure

Square
Wave

without
CF Fast
Launch

Horizontal
Only

CONST 24.02 25.59 34.38 22.40 12.00 12.00 12.00 12.00 24.65 24.54 24.64 22.79
MAN 217.55 224.20 285.15 292.55 9.48 9.41 9.00 8.57 45.66 43.76 40.41 42.99
FINE 50.65 51.81 101.47 133.15 8.56 10.13 11.51 13.14 57.29 56.63 46.21 46.59
FEAT 45.54 31.31 83.61 101.59 7.35 7.50 8.98 9.54 45.77 45.04 41.98 40.94

Horizontal
and

Vertical

CONST 23.01 24.51 25.52 25.25 12.00 12.00 12.00 12.00 30.19 29.15 29.26 33.26
MAN 232.62 242.65 388.29 318.19 8.93 9.34 7.30 7.91 43.72 43.33 44.43 44.30
FINE 53.40 60.43 88.87 116.98 9.09 9.98 9.69 13.29 51.30 48.13 46.22 43.16
FEAT 43.20 44.28 70.74 95.28 8.33 7.13 11.42 11.46 43.10 43.26 34.76 39.99

Square
Wave
with

CF Fast
Launch

Horizontal
Only

CONST 23.90 25.62 23.69 21.98 12.00 12.00 12.00 12.00 24.25 23.71 26.43 21.71
MAN 148.05 169.16 247.20 203.59 7.62 7.70 7.52 7.27 43.54 42.64 42.14 38.74
FINE 41.28 31.31 41.73 34.79 9.09 8.62 12.26 10.41 56.65 51.05 40.87 40.94
FEAT 25.71 18.44 30.41 19.77 6.48 6.61 8.92 8.93 45.41 38.52 37.14 35.53

Horizontal
and

Vertical

CONST 23.01 24.66 24.73 22.16 12.00 12.00 12.00 12.00 29.59 28.91 27.04 25.78
MAN 202.07 114.90 222.67 230.61 9.02 7.96 7.33 7.27 41.19 37.34 40.39 40.04
FINE 33.85 28.17 34.28 47.58 8.29 7.91 10.28 14.27 54.85 49.39 42.25 40.28
FEAT 24.66 25.69 20.76 51.69 7.96 8.89 10.37 9.73 42.88 37.44 36.44 36.83

We set the upper threshold somewhat low to detect increased

load as early as possible. We scale by ±3 cores per operation.

CONST: We set the number of cores in each experiment

in CONST to handle 3/4 of the peak request rate. The choice of

core count is a trade-off between the cost of over-provisioning

and the cost of slow response at high workloads. At low request

rates, CONST is over-provisioned and wastes resources. At high

request rates, it is under-provisioned and incurs long queuing

delays. Provisioning CONST is difficult because it may be hard

or even impossible to foresee peak rates in real-world systems.

Observations: In general, without fast launch, we observe

a lower queuing delay with horizontal over combined horizontal

and vertical scaling. This is caused by variance in the time it

takes to launch a VM. With more smaller VMs, some launch

quickly and begin to process requests while the remaining

VMs continue to launch. Adding CFs tends to equalize this

difference. We see lower queuing delay in AWS than Azure

without fast launch because of the longer VM launch times on

Azure. Our use of CFs tend to decrease this difference.

A. Experiments

Without Fast Launch: We establish a baseline for each

algorithm by disabling the CFs. We generate a square wave with

a trough of 15 req/sec and two peaks of 35 req/sec (more than

2× peak-to-trough) and 150 req/sec (10× peak-to-trough). We

alternate peak rates every period. We set the peak and trough

durations to 10 min each. We evaluate first with horizontal

scaling only and then with both horizontal and vertical scaling.

With horizontal only, we use VMs with a single core.

We set CONST to 12 cores. It has lowest queuing delay

because it is over-provisioned most of the time. This is reflected

in its low CPU utilization.

With Fast Launch: We see a significant improvement in

queuing delay with CFs enabled though they have no real effect

on CONST since its cores are always running. Our CFs allow

capacity to be quickly added and higher request rates have less

opportunity to form a queue. We see up to 45% less queuing

delay on AWS and up to 75% on Azure. We see up to 20%

reduction in cores in most cases. The representative traces in

Figure 5 show the combined horizontal and vertical scaling

results for pub/sub on Azure. We see FINE compute a core

count beyond our quota near the 80 minute mark. We see the

queuing delay drop, but CPU utilization also drops, causing

inefficient use of resources for an extended period. CONST is

not able to control queuing delay during the peak traffic rates.
Production Trace Evaluation: We collect network traces

from a production system that serves assets and metadata

to hundreds of clients. It is over-provisioned with multiple

machines running Apache HTTP. It services both M2M and

web browser requests. We execute many traces with similar

results. To illustrate the issues with sudden changes in offered

load, we choose a trace from a 24-hour period in February

2017 with a sudden spike in traffic near the 17th hour shown

in Figure 6. The figure shows req/sec, response size, and

response size distribution. We execute our web server with

CF fast launch enabled and horizontal scaling. We show AWS

results in Figure 7. We break queuing delay results into 1-min

intervals and show the percentage of delays greater than 10 ms

and 50 ms in these intervals, representing percentage of SLA

violations. In this experiment, we run CONST over-provisioned

(CONST1) and again with enough cores to handle 3/4 peak rate

(CONST2). We show the latter run in the figure.

CONST1 data shows inefficient use of cores (45% CPU

utilization on AWS and 42% on Azure). It has fewer SLA

violations, but at higher core count. CONST2 queuing delay

grows to excessive levels and the system does not recover by the

end of the experiment. FINE performs well because there is less

variability in request rate than in our square wave evaluations;

however, FEAT performs nearly equally well without the need

to pre-tune knobs. AWS results show FEAT decreases queuing

delay by 40% over MAN and improves CPU utilization by

40% compared to over-provisioned CONST1. This indicates

more efficient use of resources, reflected in the decrease in

core count. FEAT decreases the core count, and thus cost, by



TABLE II: Production Summary, Request/Response

Algorithm Queuing Delay (sec) Number of Cores CPU (%) 10 ms Violations (%) 50 ms Violations (%)
AWS Azure AWS Azure AWS Azure AWS Azure AWS Azure

CONST1 0.01 0.01 5.00 5.00 45.08 42.00 3.55 2.15 2.86 1.32
CONST2 662.99 242.68 3.00 3.00 73.42 75.03 36.49 34.67 35.52 33.22

MAN 1.05 0.47 4.07 3.42 62.97 69.20 14.93 15.77 13.43 14.51
FINE 0.73 0.32 3.14 3.21 82.04 80.62 10.67 6.74 10.54 5.37
FEAT 0.66 0.24 3.19 3.20 79.16 77.92 10.57 6.53 10.44 5.21
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Fig. 5: Azure Pub/Sub with Fast Launch

about 20% compared to MAN and 35% compared to CONST1.

B. Measurement Periods

Cloud providers periodically measure VM CPU utilization

and managed queue delays, eliminating the need to modify

existing code to obtain these measurements. AWS and Azure

offer two periods, a 5 min free tier and a 1 min paid tier.

Since FEAT is event-driven and operates at the cloud provider’s

measurement period, we evaluate it at each. We run a square

wave with fast launch enabled. We set a 35 req/sec peak and

15 req/sec trough with durations of 30 min each and scale

horizontally. Table III shows the results. FEAT performs much

better at 1 min intervals by keeping delays very low with little

change in the number of cores and CPU utilization. Therefore,
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Fig. 6: Network Trace

TABLE III: Measurement Period Summary

Period Delay (Sec) No. Cores CPU (%)
AWS Azure AWS Azure AWS Azure

1 min 0.47 0.33 2.97 2.82 70.35 69.24

5 min 8.71 7.89 2.79 2.76 72.52 74.32

we use a 1 min interval for all experiments in §VI. The best

measurement period among those offered by the cloud provider

can be determined dynamically at run-time as a background

task. We omit the details of this task due to space limitations.

VII. STABILITY

We evaluate FEAT’s stability with a discrete-event simulator,

that we build, that models the system as an M/M/c queue [8]

with c cores. Although M/M/c is not necessarily the perfect

model of FEAT, it gives a basis to evaluate stability. Arrival

and processing rates have exponential distributions with means

λ and µ, respectively. We run the simulator on a wide range

of values to probe boundaries of stability. Experiments include

(1) a single arrival rate with mean λ, (2) a square wave with

λ alternating between two values, and (3) a wave where we

vary λ as a sinusoid. We measure mean queuing delay and

compute standard deviation and inter quartile range (IQR) of the

queuing delay. We measure the mean core count and utilization.

Table V shows representative results for experiment 1 with

λ = 15 jobs/sec, µ = 10 jobs/sec, and launch time = 60 sec.

IQR remains low and utilization indicates the queuing system

remains stable for all cases in all experiments. We observe the

same general trends in simulation as in the implementations.

With shorter metric period, queuing delay decreases, core count

increases, and CPU utilization decreases.

VIII. CONCLUSION

We built a novel architecture for quickly auto-scaling virtual

machines by using cloud functions and designing an algorithm
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Fig. 7: AWS Req/Resp Production Trace

TABLE IV: Simulation Ranges

Variable Minimum Maximum

Arrival Rate λ 1 job/sec 1000 job/sec
Processing Rate µ 1 job/sec 1000 jobs/sec
Launch Time (Sec) 0 sec 10 min

Measurement Period 10 sec 10 min

that does not require pre-specification of parameters or thresh-

olds. We implemented our system on both AWS and Azure.

We compared it with pre-tuned and statically-provisioned al-

gorithms as well as a state-of-the-art hybrid algorithm. We

evaluated it on both synthetic data sets and production network

traces for both horizontal only and combined horizontal and

vertical scaling. We determined that it is stable through exten-

TABLE V: Results for Simulation Experiment 1

Period
(s)

Delay
(ms)

IQR
(ms)

Std
Dev
(ms)

CPU
(%)

No.
Cores

10 51.63 0.05 85.47 54.56 2.87

100 98.85 0.10 157.40 67.06 2.33

1000 124.43 0.19 203.48 71.28 2.16

sive simulation. We found that our system can reduce latency

by 2× and reduce the number of VMs, and thus cost, by 20%.
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